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Abstract

Historically, the problem with the statistical analysis of compositional data has been
described as a problem of spurious correlation induced by the constant sum constraint.
It has been explained as a consequence of the singularity of the covariance matrix,
which induces a bias towards negative correlation. This facts are undeniable. But,
to our understanding, the real problem is the use of an unsuitable geometry on the
simplex, based on the usual sum, product, Euclidean distance, Euclidean norm and
Euclidean inner product de�ned in real space. We suggest to substitute the Euclidean
geometry associated to real space by the Aitchison geometry de�ned on the simplex.
The latter is based on the concepts of perturbation, power transformation, Aitchison
distance, Aitchison norm and Aitchison inner product. It allows us to de�ne appropri-
ate measures of single and joint variability of random compositions, leading naturally
to the concept of correlation as a measure of the strength of the linear relationship (in
the Aitchison sense) between two random compositions.

Key words: Aitchison geometry, compositional data, �nite dimensional Hilbert space,
inner product, ternary diagram.

1 Introduction

The preface of the monograph on the statistical analysis of compositional data by
Aitchison (1986) begins with the following words:

As long ago as 1987 Karl Pearson, in a now classic paper on spurious corre-
lation, �rst pointed out dangers that may befall the analyst who attempts to
interpret correlations between ratios whose numerators and denominators
contain common parts.

The statistical methodology presented in the monograph, based on the essential idea
that in compositional problems size of specimens is irrelevant, and thus ratios should be
used, has been a milestone in the development of an appropriate methodology, suitable
to this type of data. Nevertheless, the fact that the actual modeling is performed
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in a transformed space, e.g. using the alr or the clr transformation, has provoked
resistance due to the loss of classical properties like unbiasedness or minimum variance
of estimators, or correlation of raw components.

In (Pawlowsky-Glahn and Egozcue, 2001a, 2001b) we have used an alternative|
geometric|approach, which leads to concepts like metric center and metric variance
de�ned on the simplex. They are analogous to the usual ones, and they are easy to
interpret. The same methodology can be used to de�ne covariance and correlation in
the simplex from a geometric perspective, and this is the purpose of this contribution.
But before we proceed, we recall brie
y the Aitchison geometry on the simplex, i.e.
the �nite dimensional real Hilbert space structure of the simplex Sd

c .

2 The Aitchison geometry on the simplex

2.1 Metric vector space structure

By de�nition, the sample space of a d-part composition with constant sum c, where c
is 1 if measurements are made in parts per unit, or 100 if measurements are made in
percent, is the simplex

Sd
c = fx = (x1; x2; :::; xd)

0jxi > 0; i = 1; 2; :::; d;
dX

i=1

xi = cg;

where the prime stands fro transpose. Let C denote the closure operation, de�ned for
a vector with strictly positive components, z = (z1; z2; :::; zd)

0, as

C(z) = C
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As stated in Aitchison (2001), the simplex is a metric vector space with the perturbation
operation, de�ned for any two vectors x;y 2 Sd

c as

xÆy = C(x1y1; x2y2; :::; xdyd)
0;

the power transformation, de�ned for a vector x 2 Sd
c and a scalar � 2 < as

��x = C(x�1 ; x
�
2 ; :::; x

�
d )

0;

and the Aitchison distance, de�ned for any two vectors x;y 2 Sd
c as

da(x;y) =

vuuut1

d

X
i<j

 
ln

xi
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� ln

yi
yj

!2
: (1)

For a proof of this assertion, see (Pawlowsky-Glahn and Egozcue, 2001a).



2.2 Finite dimensional Hilbert space structure

To de�ne a Hilbert space structure on a metric vector space, we need an inner product
which induces the distance given. As stated in (Aitchison, 2001), the norm associated
to the distance given in equation (1), which we shall call the Aitchison norm and denote
by k:ka, is

kxka = da(x; e); or kxÆy�1ka = da(x;y); (2)

and the Aitchison inner product, denoted by h:; :ia , is

hx;yia =
1

2

�
kxk2a + kyk2a � kxÆy�1k2a

�
; (3)

where y�1 denotes the inverse of composition y with respect to the perturbation op-
eration. For completeness, the following property is proven in the appendix:

Proposition 1 The inner product of two compositions de�ned in equation (3) can be
expressed as

hx;yia =
1

d

X
i<j

 
ln

xi
xj

! 
ln

yi
yj

!
;

and satis�es the conditions necessary to be a positive, non degenerate hermitic form on
the simplex.

The principal consequence of proposition 1 is that the norm associated to hx;yia, which
can be written kxka = hx;xi1=2a , de�nes a topology in Sd

c , and that with respect to this
topology Sd

c is complete.
The proof of completeness is based on the following properties:

1. Any vector x in Sd
c can be obtained as a perturbation of d vectors ui, where the

ui are obtained as the closure of a vector with all elements equal to one except
the i-th one, which is equal to the number e. The coeÆcients have to be lnxi:

x =
d
i=1(lnxi�ui):

Thus, the dimension of Sd
c is at the most d and is thus �nite.

2. Every normed space of �nite dimension is complete (Berberian, 1961).

Stated properties can be summed up in the statement that Sd
c is a �nite dimensional

Hilbert space (Zamansky, 1967). Although in mathematical textbooks �nite dimen-
sional Hilbert spaces are refered to as Euclidean spaces, we prefer to avoid the latter
terminology to prevent confusion between the usual geometry in real space and the
Aitchison geometry in the simplex.

Note that the dimension of Sd
c is not d, but actually (d � 1). To prove that this

is so, note that the alr transformation, as de�ned in (Aitchison, 1986), is a linear
application from the vector space (Sd

c ; Æ; �) onto the vector space (<d�1;+; �) whose
kernel reduces to the neutral element e of perturbation. Thus, the alr transformation
is an isomorphism and, both vector spaces being �nite, they have the same dimension,
which is necessarily (d� 1), the dimension of <d�1.

One could think that the isomorphism between both vector spaces would be helpful
in �nding a basis for the simplex. In fact, as an isomor�sm transforms forth and back



independent vectors, it seems reasonable to take the canonical basis in <d�1, consisting
of d� 1 vectors of dimension d� 1 with all elements equal to zero and the i-th equal
to one, and apply the agl transformation, inverse of the alr transformation, to obtain
the set of vectors ui, i = 1; :::; d � 1, de�ned above, except for the last one. The
resulting set of compositional vectors is certainly a basis, but not an orthogonal one,
i.e., hui;ujia = �1=d 6= 0. As a consequence thereof, the following statement holds:

Proposition 2 The alr transformation from Sd
c onto <d�1 is not an isometry.

This fact is certainly the cause of many misunderstandings concerning the use of stan-
dard statistical methods with alr-transformed data. At the same time, it justi�es the
introduction of a metric approach which complements the logratio approach presented
in (Aitchison, 1986). We have to be aware that an isomorphism guarantees probabilis-
tic assessments to be preserved, whereas an isometry is required for distance based
methods, like e.g. those based on the mean square error.

Let us recall, before proceeding to statistical concepts, a few properties derived
from the previous statements.

1. An inner product satis�es the Cauchy-Schwarz inequality: jhx;yiaj
2 � hx;xiahy;yia:

2. For the norm associated to the inner product it holds

(a) kxka = 0 () x = e;

(b) kxÆyka � kxka + kyka, for all x;y 2 Sd
c ;

(c) k��xka = j�j � kxka, for all � 2 <, x 2 Sd
c .

3 Metric covariance and metric correlation

As mentioned previously, Pawlowsky-Glahn and Egozcue (2001a, 2001b), developing
an original approach by Aitchison (2001), introduced the concepts of center and met-
ric variance as the natural counterpart for random compositions to the concepts of
expected value and variance for random variables in real space. The approach, based
on the simple idea to substitute Euclidean distance by Aitchison distance, led to the
following de�nitions for a random composition X with sample space Sd

c :

De�nition 1 The dispersion or metric variance around � 2 Sd
c is the expected value

of the squared distance between X and �: Mvar[X; �] = E [da
2(X; �)].

De�nition 2 The center of the distribution of X is that element � 2 Sd
c which mini-

mizes Mvar[X; �]. It is denoted by cen(X) or by 
 for short.

De�nition 3 The metric variance around the center cen(X) = 
 of the distribution
of X is given by Mvar[X; 
] = E [da

2(X; 
)]. It is called metric variance and denoted
Mvar[X] for short.

An extensive development of the properties derived from this de�nitions can be found
in (Pawlowsky-Glahn and Egozcue, 2001a, 2001b). In the latter contribution the the-
oretical foundation of consistency of the use of the expected value operator can be
found.



Now, given the inner product associated to the Aitchison distance de�ned on the
simplex in equation (3), the same rationale leads to introduce the natural counterparts
of covariance and correlation for random compositions.

De�nition 4 The metric covariance of two random compositions X and Y in Sd
c ,

centered respectively at cen(X) and cen(Y), is de�ned as

Mcov[XÆcen(X)�1;YÆcen(Y)�1] = E
h
hXÆcen(X)�1;YÆcen(Y)�1ia

i
:

It is denoted by Mcov[X;Y] for short.

De�nition 5 The metric correlation of two random compositions X and Y in Sd
c is

de�ned as

�m[X;Y] =
Mcov[X;Y]

(Mvar[X]Mvar[Y])1=2

Whenever it is clear from the context, the explicit reference to the random compositions
X and Y is omitted and the metric correlation is denoted simply by �m.

From the de�nitions of distance, norm and inner product in equations (1), (2) and (3),
it is straightforward to show that the de�nition of metric covariance reduces to the
de�nition of metric variance whenever Y is substituted by X. Useful properties of the
metric covariance and correlation follow. The proofs are omitted as they are direct
applications of properties of the inner product stated before and of the linearity of the
expected value operator.

Proposition 3

Mcov[X;Y] =
1

d

X
i<j

E

" 
ln

Xi

Xj

� ln

xi

xj

! 
ln

Yi
Yj

� ln

yi

yj

!#

where 
x = cen(X) and 
y = cen(Y).

Proposition 4

Mcov[X;Y] =
1

2

�
Mvar[X] + Mvar[Y]�Mvar[XÆY�1]

�
:

From property 4 the following `standard' relationships between the metric variance of
the perturbation of two random compositions, their metric variances and their covari-
ance, are obtained. They are the counterpart of properties which relate the variance of
the sum and di�erence of random variables with their variance and covariance. Thus
it holds

Mvar[XÆY�1] = Mvar[X] + Mvar[Y]� 2Mcov[X;Y]

Mvar[XÆY] = Mvar[X] + Mvar[Y]� 2Mcov[X;Y�1]:



4 Conclusions

Metric covariance and metric correlation are concepts that relate random compositions,
thus random vectors, and not random variables in an univariate sense. It is clear that
the de�nitions and properties given hold for subcompositions, but they will always be
related to random compositions with at least two components and cannot be reduced
to a kind of relationship between individual components, although for that case we
have already the concept of perfect proportionality de�ned in (Aitchison, 2001), which
is given whenever the usual Euclidean variance of the logratio of two components is
constant.
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Appendix

Proof of proposition 1. Consider equation (3),

hx;yia =
1

2

�
kxk2a + kyk2a � kxÆy�1k2a

�
;

and rewrite the norms in terms the Aitchison distance

hx;yia =
1

2

�
da

2(x; e) + da
2(y; e)� da

2(x;y)
�
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1

2
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!21A :

Developing the square and simplifying the corresponding sums of squares, the desired
result is obtained. Thus, we can write

hx;yia =
1

d

X
i<j

 
ln

xi
xj

! 
ln

yi
yj

!
;

an expression that is more suitable to proof that it is actually an inner product. Ac-
cording to Zamansky (1967), to have an inner product we need an hermitic form, which
is an application '(:; ), de�ned from Sd

c �Sd
c onto <, which satis�es the following con-

ditions (we write only those required for the real case, ommitting the corresponding
properties for a complex �eld):

1. '(xÆx0;y) = '(x;y) + '(x0;y), '(x;yÆy0) = '(x;y) + '(x;y0);

2. '(��x;y) = � � '(x;y), '(x; ��y) = � � '(x;y);

3. '(x;y) = '(y;x).

To show that hx;yia is an hermitic form, note that

hx;yia =
1

d

X
i<j

 
ln

xi
xj

! 
ln

yi
yj

!
=

1

d

X
i<j

  
ln
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yj

ln
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xj

!!
= hy;xia

due to commutativity of the product in real space. Thus, condition 3 is satis�ed,
implying that the form is simmetric, and to proof conditions 1 and 2 we only need to
proof the �rst part. Consider now

hxÆx0;yia =
1

d
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d
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;

which proofs condition 1, whereas

h��x;yia =
1
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proofs condition 2. Clearly, hx;yia is a positive form, as the condition for this to be
so is that hx;xia � 0 for all x, which is trivially satis�ed. Furthermore, to be non



degenerate, the necessary and suÆcient condition is that hx;xia = 0 () x = e,
where e is the neutral element of the inner operation on the simplex. Again, the
veri�cation of this condition is straightforward, as

hx;xia =
1

d

X
i<j

 
ln

xi
xj

! 
ln

xi
xj

!
= 0

if, and only if, for all i; j, lnxi�ln xj = 0. But this is only satis�ed if, for all i, xi = 1=d,
which is equivalent to say that x = e. 2
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