Build-and-Fill Sequences: Predictable Patterns of Creation and Destruction of Paleotopography in Small-Scale Sequences

P evil K. FRANSEE, Kansas Geological Survey, Lawrence, KS
and
ROBERT H. GOLSTEIN, University of Kansas, Lawrence, KS

Purpose

- To evaluate controls on small-scale sequences
 (up to tens of m) deposited during ice-house
 conditions that maintain similar thickness
 throughout wide geographic areas despite
 draping topography and containing facies
 that both build and fill relief.

- Use Pennsylvanian, Permian and Upper
 Miocene examples to demonstrate various build
 and fill facies and architectures.

- Demonstrate that build-and-fill sequences:
 1. Form in the build-and-fill zone.
 2. Build relief into underfilled accommodation
 during sea-level rises.
 3. Tend to smooth out paleotopography during
 sea-level falls (accommodation limited).

- Consist of associations of reservoir/non-
 reservoir facies that build and fill relief.

Implements

- Expect build-and-fill sequences to develop during
 periods of high frequency-high amplitude sea-level
 fluctuations when carbonate production is not optimal.

- Build-and-fill sequences form in the build-and-
 fill zone, in middle ramp/shelf settings that lie
 between highstand and lowstand positions.

- Build-and-fill sequence architecture may be
 predictable given knowledge of the sea-level
 history, paleotopography, and controls on sediment
 production and dispersal.

- Many shallow-water carbonate facies fill low
 areas as opposed to building relief on paleohills.

- Siliciclastics can fill or build relief.

- Thealternation of building and filling processes
 during a single sea-level cycle produces a
 thin widespread sequence with complex
 internal architecture.

Build-and-Fill Zone

- Rates of sea-level change are high.
- Production unable to keep up with raised rate; relief is
 built in underfilled accommodation; relief filled
 during sea-level fall to create even-thickness sequence.
- Sequences show build and fill character; sequences
 may be deepening upward; upper portions of sequences may shallow

Examples of Settings

- Examples used come from the Pennsylvania of Kansas and New Mexico, Permian of New Mexico, and Upper Miocene of the Mediterranean Area (Spain)

Major Controls on Build-and-Fill Sequences

1. Icehouse conditions - times of high amplitude and high frequency sea-level fluctuations
2. A perturbed system in which carbonate productivity is lower than optimum
 - Too many nutrients, stratified systems; cool water?
3. Erosion controls (topography).
 - Re-colonization time/lag time allowing systems to fall behind
 - Energy considerations may be important
 - Wide ramps/shelves - prevent effective ooid production
 - An area behind a shelf margin high characterized by low energy and decreased productivity
3. Substrates not in highstand or lowstand positions
 - Intermediate shelf and ramp positions
 - Platform interiors that are not at the right elevation to be in shallow water during highstand or lowstand

Pennsylvanian Midcontinent Setting

- High-frequency sequences were deposited on a broad, gently sloping shelf bordered by the clastic wedge.Antecedent basin of Mississippian and Pennsylvanian ages
- Field site in the south-central Texas oil belt with high amplitude fluctuations with amplitudes: 75-100 m

- The study area is characterized by highly variable clastics and shallow marine carbonates. Sequences are characterized by gently sloping ramp and shelf environments
- Given the overall thicknesses of the sections, the depositional sequence is relatively high and rapid.

- Median durations of sea-level fluctuations are 25-30ka

Upper Miocene Mediterranean Setting

- High-frequency sequences were deposited on a broad, gently sloping shelf bordered by the clastic wedge. Sequences are characterized by gently sloping ramp and shelf environments
- Given the overall thicknesses of the sections, the depositional sequence is relatively high and rapid.

- Median durations of sea-level fluctuations are 25-30ka

- Mediterranean area a more restricted rise; high-frequency sequences are unlikely to be preserved, and perhaps only economically important sections have been identified in the nearby Atlas and Sardinian areas.