Banner with processing images.

第一个版本的 SurfSeis 软件 (v. 1.0) 发布于2000年,它包含了将面波多道分析法 (MASW) 应用于地震数据上。在堪萨斯地质调查局(KGS) 开发的MASW法主要由四个部分组成 (Miller et al., 1999): roll-along 数据采集, 频散曲线成像(Song et al., 1989; Park et al., 1998; Xia et al., 2007; Luo et al., 2009), 频散曲线反演获得一维横波速度(Vs)剖面 (Xia et al., 1999), 并使用插值法 (Matheron, 1967; Olea, 1974) 将多个一维结果合成二维或三维图像 (Miller et al., 1999; Miller et al., 2003)。

 

MASW 法最初是为使用主动震源数据而开发的, 又名. "Active MASW" (Miller et al., 1999; Park et al., 1999) 。 同样的技术后来被扩展应用到被动震源数据中, 又名. "Passive MASW" (Park et al., 2004; Park et al., 2005a; Park and Miller, 2008; Ivanov et al., 2013; Ivanov et al., 2017a) 。接下来版本的软件 - SurfSeis 2, 3, 4, 5, 6 – 加入了新的研究和方法开发的功能 (http://www.kgs.ku.edu/software/surfseis/pubs_year_cn.html), 以及用户所需的更多功能选项和改进的用户界面

 

随软件分发的主要手册是SurfSeis 版本 1.5。下列版本的手册只是对它们在当前版本中的新功能的描述。

SurfSeis 2 手册 (Manual2.05.pdf) 主要用于介绍使用被动 MASW , 正向频散曲线建模 (使用一维速度模型估计频散曲线的值) 并将其显示在频散曲线图像上 (又名, Overtone images), 以及在频散曲线上的随机 Monte Carlo 反演。 SurfSeis 2 手册可以作为主动和被动MASW方法的独立手册,适用于那些在体波或面波法地震数据采集与处理方面有经验的人。

 

SurfSeis 3 手册 (Manual3.05.pdf) 提供了有关如何选择和反演瑞利波的更高模态的信息 (除了传统的基本模态之外), 其中讨论了新开发的菜单系统,它可以使用户在使用SurfSeis的过程中拥有更好的体验 (除了以前存在的按钮驱动界面外), 并告知用户使用 USB 密钥 (又名, 硬件密钥, 密保, etc.) 的新软件许可证保护。

 

SurfSeis 手册 (SurfSeis4UserManual.pdf) 介绍了下一组新开发的功能,旨在提供更多工具,它们能有助于提高面波的分析质量,如滑窗被动频散曲线成像,和更便捷的二维初始模型参数输入 (, 纵波速度 (Vp), 泊松比, 和密度), 正在进行反演的二维监控, 此外, v4 手册还演示了使用高分辨率线性radon变换 (Luo et al., 2009) 时更清晰的频散曲线成像能力, SurfSeis 4.2中可以使用该变换

 

SurfSeis 5 手册(SurfSeis5UserManual.pdf) 介绍了如何利用二维成像观测可变海拔和最大深度。我们发现后者对解释和避免难以注意到的外推区域有明显的帮助。HRLRT 现在可用于被动数据数据频散曲线成像,我们经常发现它在成像方面明显优于其他方法。HRLRT 也可以用于单记录处理(通常用于初始数据测试和评估)。 将频散曲线图形 (又名 频速谱或 "有效模态") 的建模和随机反演扩展到使用多达20层的 .lst 结果输入。适用于瑞利波和可选的拉夫波。Scholte [又名, 水下 (Kaufmann et al., 2005; Park et al., 2005b) MASW] 建模和反演,随机 (在频散曲线图像上) 和确定 (, 常规) 。 拉夫波 (Xia et al., 2012b; Ivanov et al., 2017b) 建模和反演, 随机 (在频散曲线图像上) 和确定 (, 常规), 可以在SurfSeis 5.1 SurfSeis 5.3版本中选择

 

SurfSeis 6 手册 (SurfSeis6UserManual.pdf) 介绍了如何应用约束反演度 (例如, 利用井的测量数据), 使用Advanced Kriging插值法拼接频散图像以提高低频和高频的水平分辨率的最终Vs估计能力。 Qs (和有条件的 Qp) 估计 (Xia et al., 2012a; Ivanov et al., 2014; Feigenbaum et al., 2016) 来自瑞利波衰减测量的Qs (和有条件的Qp)估计, 使用常规或特殊聚焦滤波后估计衰减曲线,用于QsQp)反演,这个是SurfSeis 6 6.4 6.7的可选功能

 

参考文献

Feigenbaum, D., J. Ivanov, R. Miller, S. Peterie, and S. Morton, 2016, Near-surface Qs estimations using multichannel analysis of surface waves (MASW) and the effect of nonfundamental mode energy on Q estimation: An example from Yuma proving ground, Arizona, SEG Technical Program Expanded Abstracts 2016, 4971-4976.

Ivanov, J., B. Leitner, W. T. Shefchik, T. J. Schwenk, and S. L. Peterie, 2013, Evaluating hazards at salt cavern sites using multichannel analysis of surface waves: The Leading Edge, 32, 289-305.

Ivanov, J., R. D. Miller, S. L. Peterie, and G. Tsoflias, 2014, Near-surface Qs and Qp estimations from Rayleigh waves using multi-channel analysis of surface waves (MASW) at an Arctic ice-sheet site, SEG Technical Program Expanded Abstracts 2014, 2006-2012.

Ivanov, J., R. Miller, D. Feigenbaum, and J. Schwenk, 2017a, Benefits of using the high-resolution linear Radon transform with the multichannel analysis of surface waves method, SEG Technical Program Expanded Abstracts 2017, 2647-2653.

Ivanov, J., R. D. Miller, D. Feigenbaum, S. L. C. Morton, S. L. Peterie, and J. B. Dunba, 2017b, Revisiting levees in southern Texas using Love-wave multichannel analysis of surface waves with the high-resolution linear Radon transform: Interpretation, 5, T287-T298.

Kaufmann, R. D., J. H. Xia, R. C. Benson, L. B. Yuhr, D. W. Casto, and C. B. Park, 2005, Evaluation of MASW data acquired with a hydrophone streamer in a shallow marine environment: Journal of Environmental and Engineering Geophysics, 10, 87-98.

Luo, Y. H., J. H. Xia, R. D. Miller, Y. X. Xu, J. P. Liu, and Q. S. Liu, 2009, Rayleigh-wave mode separation by high-resolution linear Radon transform: Geophysical Journal International, 179, 254-264.

Matheron, G., 1967, Kriging or Polynomial Interpolation Procedures - a Contribution to Polemics in Mathematical Geology: Canadian Mining and Metallurgical Bulletin, 60, 1041-&.

Miller, R. D., J. Xia, C. B. Park, and J. M. Ivanov, 1999, Multichannel analysis of surface waves to map bedrock: The Leading Edge, 18, 1392-1396.

Miller, R. D., T. S. Anderson, J. Ivanov, J. C. Davis, R. Olea, C. Park, D. W. Steeples, M. L. Moran, and J. Xia, 2003, 3-D characterization of seismic properties at the smart weapons test range, YPG: 73rd Annual International Meeting, SEG, Technical Program Expanded Abstracts, 22, 1195-1198.

Olea, R. A., 1974, Optimal Contour Mapping Using Universal Kriging: Journal of Geophysical Research, 79, 695-702.

Park, C. B., R. D. Miller, and J. Xia, 1998, Imaging dispersion curves of surface waves on multi-channel record 68th Annual International Meeting, SEG, Expanded Abstracts, 1377-1380.

Park, C. B., R. D. Miller, and J. H. Xia, 1999, Multichannel analysis of surface waves: Geophysics, 64, 800-808.

Park, C. B., R. D. Miller, D. Laflen, C. Neb, J. Ivanov, B. Bennett, and R. Huggins, 2004, Imaging dispersion curves of passive surface waves: 74th Annual International Meeting, SEG, Expanded Abstracts, 23, 1357-1360.

Park, C. B., R. D. Miller, N. Ryden, J. Xia, and J. Ivanov, 2005a, Combined use of active and passive surface waves: Journal of Environmental and Engineering Geophysics, 10, 323-334.

Park, C. B., R. D. Miller, J. Xia, J. Ivanov, G. V. Sonnichsen, J. A. Hunter, R. L. Good, R. A. Burns, and H. Christian, 2005b, Underwater MASW to evaluate stiffness of water-bottom sediments: The Leading Edge, 24, 724-728.

Park, C. B., and R. D. Miller, 2008, Roadside passive multichannel analysis of surface waves (MASW): Journal of Environmental and Engineering Geophysics, 13, 1-11.

Song, Y. Y., J. P. Castagna, R. A. Black, and R. W. Knapp, 1989, Sensitivity of near-surface shear-wave velocity determination from rayleigh and love waves: 59th Annual International Meeting, SEG, Expanded Abstracts, 8, 509-512.

Xia, J. G., Y. X. Xu, R. D. Miller, and J. Ivanov, 2012a, Estimation of near-surface quality factors by constrained inversion of Rayleigh-wave attenuation coefficients: Journal of Applied Geophysics, 82, 137-144.

Xia, J. H., R. D. Miller, and C. B. Park, 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, 64, 691-700.

Xia, J. H., Y. X. Xu, and R. D. Miller, 2007, Generating an image of dispersive energy by frequency decomposition and slant stacking: Pure and Applied Geophysics, 164, 941-956.

Xia, J. H., Y. X. Xu, Y. H. Luo, R. D. Miller, R. Cakir, and C. Zeng, 2012b, Advantages of Using Multichannel Analysis of Love Waves (MALW) to Estimate Near-Surface Shear-Wave Velocity: Surveys in Geophysics, 33, 841-860.