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ABSTRACT

Rayleigh waves are generated along the free surface and their
propagation can be strongly influenced by surface topography.
Modeling of Rayleigh waves in the near surface in the presence
of topography is fundamental to the study of surface waves in
environmental and engineering geophysics. For simulation of
Rayleigh waves, the traction-free boundary condition needs to
be satisfied on the free surface. A vacuum formulation naturally
incorporates surface topography in finite-difference (FD) model-
ing by treating the surface grid nodes as the internal grid nodes.
However, the conventional vacuum formulation does not comple-
tely fulfill the free-surface boundary condition and becomes un-
stable formodelingusing high-order FDoperators.Wedeveloped

a stable vacuum formulation that fully satisfies the free-surface
boundary condition by choosing an appropriate combination
of the staggered-grid form and a parameter-averaging scheme.
The elastic parameters on the topographic free surface are up-
dated with exactly the same treatment as internal grid nodes.
The improved vacuum formulation can accurately and stably si-
mulate Rayleigh waves along the topographic surface for homo-
geneous and heterogeneous elastic models with high Poisson’s
ratios (>0.4). This method requires fewer grid points per wave-
length than the stress-image-based methods. Internal discontinu-
ities in a model can be handled without modification of the
algorithm. Onlyminor changes are required to implement the im-
proved vacuum formulation in existing 2D FD modeling codes.

INTRODUCTION

Dispersive Rayleigh waves have been widely employed to esti-
mate S-wave velocities in shallow layers (Nazarian and Stokoe,
1984; Xia et al., 1999, 2003, 2004, 2006; Calderón-Macías and
Luke, 2007; Luo et al., 2009a; Socco et al., 2010). Numerical
modeling of Rayleigh waves has been investigated in near-surface
seismology for various purposes including a study of attenuation
(Carcione, 1992) and a shallow cavity investigation (Gelis et al.,
2005). Rayleigh waves are the combination of P-waves and the
vertical component of shear waves (SV-waves) along the free
surface. They can be simulated in the 2D P-SV wave domain by
solving the vector wave equation through numerical methods (e.g.,
the finite-difference [FD] method). The physical discontinuity of

the earth’s surface poses constraints on the elastic wave solutions.
A vacuum-earth interface is a traction-free surface on which the
free-surface boundary condition is satisfied (Aki and Richards,
2002). On a horizontal vacuum-earth plane in the 3D Cartesian
coordinate system, the shear stress components and the vertical nor-
mal stress are all zero. Numerical implementation of this free-
surface condition is critical for the accuracy of simulated Rayleigh
waves. The surface topography strongly distorts the near-surface
wavefield. An appropriate implementation of the free surface that
includes topography is key to the accurate simulation of Rayleigh-
wave propagation in near-surface.
In the FD method, the earth model is usually discretized

into rectangular or cubical cells. The conventional FD implementa-
tion of the free-surface boundary condition is only valid for the
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horizontal (planar) earth surface (Mittet, 2002; Xu et al., 2007).
The staggered-grid technique (Virieux, 1986) and the parameter-
averaging scheme (Moczo, 2002) increase the implementation com-
plexity of the free-surface boundary condition in the presence of
surface topography.
Jih et al. (1988) introduce a technique to decompose an irregular

free surface into line segments to handle surface topography.
Tessmer et al. (1992) propose a coordinate mapping method includ-
ing surface topography. Robertsson (1996) analyzes the categories
of surface grid nodes and presents a numerical free-surface bound-
ary condition with an arbitrary topography. Robertsson’s method
can be considered an extension of the classical stress-image tech-
nique originally proposed for the horizontal free surface by
Levander (1988). This technique approximates the topographic
earth surface by a fine-grid staircase shape. The stress-image tech-
nique is used to update the particle velocities for grid nodes located
on the free surface. For grid nodes above the free-surface, the par-
ticle velocities are forced to be zero.
In the image method (Robertsson, 1996), grid nodes on the free

surface are classified into seven categories for a 2D earth model.
Each category employs a different strategy to update the stress and
velocity components. The classification of surface grid nodes can be
complicated for an arbitrary surface topography and is challenging
when the model contains internal discontinuities (such as the tunnel
earth model commonly investigated in near-surface seismology
[Gelis et al., 2005; Xia et al., 2007a]). Moreover, the accuracy
of the image method for Rayleigh waves is reduced along the sur-
face topography and the simulation requires more grid points per
wavelength (ppw) than conventional seismic modeling focusing on
P-waves (Robertsson, 1996).
Another approach to incorporating surface topography is using

the so-called vacuum formulation (Zahradník et al., 1993; Graves,
1996), in which the physical parameters are set to zero on the grid
nodes above the free surface. The free-surface boundary is then
treated as an internal interface inside the model. Within this method,
the surface topography and internal discontinuities are automati-
cally identified by data variations of elastic coefficients. Parameters
for all grid nodes throughout the model are updated in exactly the
same manner, which simplifies program implementation. Numeri-
cal tests indicated that the simple vacuum formulation is only stable
for second-order spatial FD operators (Graves, 1996). Moreover,
the conventional vacuum formulation does not completely fulfill

the traction-free boundary condition on the discretized vacuum-
earth interface. The vertical normal stress may not be zero during
the FD calculation for the grid nodes located exactly on the free
surface. This generates unsatisfactory results for the simulation
of Rayleigh waves.
Here, we propose an improved vacuum formulation to incorporate

surface topography and internal discontinuities for FD modeling of
Rayleigh waves in the near surface. The proposed method inherits
the advantage of conventional vacuum formulation. In addition,
the stability of vacuum formulation is improved by an appropriate
parameter-averaging scheme in the staggered-grid system. We show
that the improved vacuum formulation satisfies the traction-free
boundary condition on the vacuum-elastic interface with the consid-
eration of an overlain fictitious layer. The accuracy of the proposed
method is benchmarked by comparing the synthetic records with the
modeling results of the spectral-element method (SEM) (Komatitsch
and Tromp, 1999). We also compare the improved vacuum formula-
tion with the image method. Stability tests of the algorithm are per-
formed by modeling surface waves for earth models including
surface topography with Poisson’s ratios varying from 0.25 to 0.49.
Finally, we demonstrate the ability to simulate Rayleigh waves for
earth models with internal discontinuities.

MODELING OF RAYLEIGH WAVES
IN THE 2D P-SV DOMAIN

The isotropic elastic wave equation in the vertical 2D Cartesian
coordinate system can be written in the following velocity-stress
form (Virieux, 1986)

∂vx
∂t

¼ b

�
∂τxx
∂x

þ ∂τxz
∂z

�
; (1)

∂vz
∂t

¼ b

�
∂τxz
∂x

þ ∂τzz
∂z

�
; (2)

with the stress-train relations

∂τxx
∂t

¼ ðλþ 2μÞ ∂vx
∂x

þ λ
∂vz
∂z

; (3)

∂τzz
∂t

¼ ðλþ 2μÞ ∂vz
∂z

þ λ
∂vx
∂x

; (4)

∂τxz
∂t

¼ μ

�
∂vx
∂z

þ ∂vz
∂x

�
; (5)

where ðvx; vzÞ is the particle velocity vector, bðx; zÞ is the buoyancy
(the inverse of density ρ), ðτxx; τzz; τxzÞ is the stress vector, λ and μ
are the Lamé coefficients, and t is the time variable. The model is
discretized through the staggered-grid technique to ensure the sta-
bility in a heterogeneous medium with large variations of Poisson’s
ratios. The elastic parameters are shifted as in the scheme shown in
Figure 1, where i and k are the indices of the grid node in the x- and
z-directions, respectively. This is equivalent to the H formulation
(Kristek et al., 2002) staggered-grid system in which the vertical
particle velocity components are located half a grid position below

Figure 1. The staggered-grid scheme used for the proposed vacuum
formulation. The light circles are the grid nodes. The grid position is
described by the indices i and k. The normal stress tensor compo-
nents τxx and τzz, Lamé coefficients λ and μ, and the mass density ρ
are all defined at the grid nodes. The triangle is the shear stress ten-
sor component (τxz). The solid squares and solid circles represent
the horizontal particle velocity (vx) and the vertical particle velocity
(vz), respectively.
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the free surface. Rayleigh waves can be simulated as a part of the
solution to the 2D elastic wave equation.
For a semi-infinite earth model with a planar free surface, the para-

meters for grid nodes that are close to the free surface can be
evaluated by the stress-image technique in second-order accuracy
(Graves, 1996). The other edges of the model are usually attached
with absorbing boundaries to suppress the spurious reflections
caused by the physical truncation of the finite-sized model. The spe-
cial formulation for free-surface grid nodes introduces difficulties to
the modeling in presence of topography. For an earth model with an
irregular top surface, the concept of vacuum formulation seems very
attractive because of its simplicity of implementation. Unfortunately,
simply setting the physical parameters above the free surface to zero
does not guarantee the correct generation of Rayleigh waves because
the conventional vacuum formulation does not fulfill the traction-free
boundary condition (τzz ¼ τxz ¼ 0 at free-surface grid nodes).

THE IMPROVED VACUUM FORMULATION

Parameter-averaging scheme

The results of FD modeling can be different depending on the
specific choice of staggered-grid configuration. One can locate vx
exactly on the free surface, and let vz shift half a grid below it, or
vice versa. Both forms of the staggered-grid system have been
studied by Kristek et al. (2002), and the differences are usually neg-
ligible. On the other hand, a slight modification in the parameter-
averaging scheme may yield the distinct stability and accuracy of
the modeling (Mittet, 2002). Moczo et al. (2002) chose to use
volume harmonic averaging for the shear modulus and volume
arithmetic averaging for the density. Mittet (2002) suggested that
the averaged rigidity μ̄xz should be zero if any shear modulus that
participates the averaging is zero to ensure the shear stress compo-
nent τxz is always zero on the acoustic-elastic interface. If we
consider the shear modulus μi;k for the grid node (i, k), the
vacuum-elastic interface is similar to the acoustic-elastic interface
because μi;k ¼ 0 in both cases. Hence, Mittet’s (2002) scheme can
be extended following Moczo’s (2002) principles of parameter
averaging. The expressions for the effective parameters b̄x, b̄z,
and μ̄xz are

b̄x ¼
�
0; if ρi;k ¼ 0 and ρiþ1;k ¼ 0;

2
ρi;kþρiþ1;k

; otherwise; (6)

b̄z ¼
�
0; if ρi;k ¼ 0 and ρi;kþ1 ¼ 0;

2
ρi;kþρi;kþ1

; otherwise; (7)

μ̄xz ¼
8<
:

�
1
4

�
1
μi;k

þ 1
μiþ1;k

þ 1
μi;kþ1

þ 1
μiþ1;kþ1

��
−1
; if μi;kμiþ1;kμi;kþ1μiþ1;kþ1 ≠ 0;

0; otherwise:

(8)

Using the parameter-averaging scheme in equations 6, 7, and 8 is
particularly important to ensure the stability of modeling with the
vacuum formulation.

Consideration of a fictitious layer

By applying the proposed parameter-averaging scheme, the
vacuum formulation can fulfill the traction-free boundary condition

by considering a fictitious layer (shadowed area in Figure 2) above
the original topographic model surface. The thickness of this ficti-
tious layer is only half a grid spacing so that the free surface is also
shifted half a grid above its original position. In this case, the only
stress component located on the free surface is the shear stress com-
ponent τxz. The horizontal particle velocity vx and the vertical
particle velocity vz are exactly on the free surface after the shift.
All the elastic parameters and physical quantities should be set to
zero above the free-surface boundary line (the bold line in Figure 2)
because they are in the vacuum. The parameters in the original elas-
tic part of the model are left unchanged. According to equation 8,
the effective rigidity μ̄xz on the free-surface boundary line is always
zero if we set the shear modulus μ to zero for grid nodes in the
vacuum. With this strategy, the value of τxz is automatically zero
during the calculation according to equation 5. The normal stress
τzz is now under the free surface and located in the elastic part of
the model; hence, it does not need to be considered for the free-
surface boundary condition.
Although we consider a fictitious layer above the model surface

for analysis purposes, no changes are required in the program
implementation to explicitly set up this fictitious layer because it
is naturally generated by the combination of the staggered-grid form
and the proposed parameter-averaging technique. For the shear
stress components on the horizontal and vertical surface segments
(e.g., points A and C in Figure 2) or the inner and outer corners
(e.g., points B and D in Figure 2), they are always zero due to
the averaged zero rigidities. The averaged buoyancy on the free-
surface boundary line is twice the buoyancy at the adjacent grid
node inside the solid earth. For example, the averaged buoyancy
b̄E0 at point E0 (Figure 2) can be calculated by b̄E0 ¼
2∕ðρE−1 þ ρEþ1Þ ¼ 2bEþ1 (ρE−1 ¼ 0 in the vacuum), where ρE−1
and ρEþ1 are the mass density at grid nodes E−1 and Eþ1, respec-
tively. Similarly, the averaged buoyancy at point F is b̄F ¼ 2bEþ1.
This is consistent with the elastic parameter modification scheme in
conventional FD modeling with a planar free surface (Mittet, 2002;
Xu et al., 2007), which is important to the accuracy of the simulated
Rayleigh waves.

Figure 2. Grid distribution of the improved vacuum formulation in
presence of surface topography. The shadowed area is a fictitious
layer whose thickness is only half a cell size. The free surface in
actual computation is represented by the bold solid line. All param-
eters above the free surface are set to zero during modeling. The
oblique surface segment can be approximated by the staircase shape
(e.g., left part of the free surface).
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Velocity updating on the grid nodes

In the proposed method, the particle velocities should be updated
in an averaged scheme because they are not exactly located on the
grid nodes in the staggered-grid system. For instance, the vertical
particle velocity on the free-surface is calculated by vEþ1 ¼
ð1∕2ÞðvE0 þ vEþ2Þ, where vE0, vEþ1, and vEþ2 are the vertical par-
ticle velocities at points E0, Eþ1, and Eþ2, respectively (Figure 2).
This indicates that the vertical particle velocity on the free surface in
the proposed vacuum formulation is output as an averaged value of
the vz on the fictitious free-surface line and that inside the elastic
model. Differing from the stress-image method, the normal stress
components on each side of the free surface are not symmetric
in the proposed vacuum formation. The particle velocities vx and
vz are considered in the elastic part of the model rather than in
the vacuum. Because of this, they will not be reset to zero in each
time marching loop, which is different from the treatment to the
outer corner points in the image method (Robertsson, 1996).
Like in most FD modeling techniques including surface topogra-

phy, the oblique segments of the topography are approximated by a
staircase shape (Hayashi et al., 2001). The primary shortcoming of
this approximation is that it needs a fine-grid discretization to
reduce the spurious diffractions at the corners of the stairs. In near-
surface seismic modeling focusing on Rayleigh waves, the grid
spacing is usually already small enough because a large points per
wavelength (ppw) (at least 16 ppw for the shortest-wavelength
surface waves) is required to suppress the numerical dispersion
of the synthesized Rayleigh waves (Mittet, 2002). In most cases,

the amplitudes of the diffractions are too weak to be noticed on the
synthetic records compared to the amplitudes of the direct Rayleigh
waves. Hayashi et al. (2001) investigate the diffractions caused by
the staircase shape and conclude that the spurious diffractions have
less influence on the accuracy of the synthetic record than the
numerical dispersion caused by insufficient ppw.

BENCHMARK OF THE ALGORITHM

In the staircase approximation, an oblique interface is represented
by many small horizontal and vertical planar segments. Following
the accuracy tests of Robertsson (1996), we use the homogeneous
linear-slope models to test the accuracy of the proposed vacuum
formulation. In conventional modeling tests, analytical solutions
are usually employed to check the accuracy of the results of numer-
ical modeling. However, for a semi-infinite homogeneous elastic
medium, the analytical solution to Lamb’s problem (Lamb, 1904)
only exists when the surface is horizontal. Fortunately, the SEM can
accurately approximate the surface topography by using the com-
bination of tetrahedral or hexahedral volume elements. Surface
waves can be simulated with high precision by the SEM because
the free-surface condition is naturally satisfied regardless of the
topography (Komatitsch and Tromp, 1999). Hence, the proposed
vacuum formulation can be benchmarked by comparing the trace
records with the modeling results for the same model calculated
by the SEM.
The geometry of the 2D model used for the benchmark is shown

in Figure 3. The physical parameters of the model are listed in
Table 1. It is a homogeneous elastic Poisson’s solid (Poisson’s ratio
σ ¼ 0.25) with a single oblique flat free surface. The left, right, and
bottom edges of the model are attached with the perfectly matched
layer (PML) absorbing boundaries (Collino and Tsogka, 2001) dur-
ing the modeling so that the energy of the spurious reflections can
be minimized. All physical parameters above the free surface are set
to zero. A vertical vibrating point source and a single receiver are
located exactly on the free surface and are separated by a constant
horizontal distance of 60 m. The source wavelet is a 20-Hz Ricker
wavelet defined by

wðtÞ ¼ ½1 − 2π2f 2ðt − t0Þ2�e−π2f 2ðt−t0 Þ2 ; (9)

where f is the peak frequency, t is the time variable, and t0 is the
time delay. During the modeling implementation, the source is
added to the vertical particle velocity vz on the corresponding grid
nodes at each time slice. The left and right sections of the model
surface beyond the source and receiver range are rounded to hor-
izontal so as to accommodate the absorbing boundaries and reduce
the spurious diffractions at the transition corners. The model was
discretized in a fine-grid manner (0.1 m × 0.1 m) to ensure the sta-
bility of the modeling and to reduce the influence of the staircase
approximation. We change the slope angle (θ) of the free surface
and run the simulation using the fourth-order staggered-grid FD
modeling scheme (second-order in time) described by Graves
(1996) with the proposed vacuum formulation. The stability condi-
tion is exactly the same as that presented by Graves (1996). Because
the source and the receiver are separated constantly in the horizontal
direction, the actual offset during the simulations increases with the
increment of θ. The source vibrates in the vertical direction for all
simulations so that it interacts with the free-surface plane at differ-
ent angles. Hence, this test simulates the propagation of Rayleigh

Figure 3. Geometry of the homogeneous slope model for the
benchmark tests. The star represents the location of the source.
The triangle indicates the location of the receiver. The slope surface
is approximated by the staircase shape. The grid lines show the
model discretization for FD modeling. The grid spacing illustrated
here is only for demonstration. The actual grid spacing
(0.1 × 0.1 m) during computation is much smaller than shown in
this figure. The slope-angles of the free surface in the benchmark
are 30°, 45°, and 60°.

Table 1. Physical parameters of a homogeneous earth model

P-wave velocity
(m∕s)

S-wave velocity
(m∕s)

Density
(kg∕m3)

866 500 2000

T4 Zeng et al.
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waves under various conditions along different oblique planar sur-
faces. Figure 4a, 4b, and 4c demonstrate the synthetic trace records
of vertical particle velocity vz when θ ¼ 30°, 45°, and 60° with the
comparison to the SEM results for each corresponding model. All
trace records generated by the proposed vacuum formulation agree
with the SEM results with negligible differences. This indicates that
the P-SV wavefield is accurately simulated using the improved
vacuum formulation independent of the angles of slope.

TESTS FOR IRREGULAR SURFACE TOPOGRAPHY

To confirm the accuracy of the proposed vacuum formulation, an
earth model with more complicated surface topography (Figure 5) is
employed for the simulation. The model parameters are the same as
those in Table 1. The free surface is composed of a ridge and a val-
ley, which is a typical case for the data acquisition over a small hill
in environmental and engineering studies. The 100-channel receiver
array is placed on the free surface across the topography. The trace
interval is 1 m in the horizontal direction. The source parameters are
the same as those used in the previous benchmark for linear slope
models. To minimize the influence of the staircase approximation,
the model is discretized into 0.1 m × 0.1 m cells. Three PMLs are

attached on the left, right, and bottom edges of the model to absorb
the spurious reflections. The Courant number defined by

Ccourant ¼
�X

cm

�
Δtvmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Δx2
þ 1

Δz2

r
; (10)

is about 0.3 during the modeling to ensure the stability of the FD
algorithm, where

P
cm represents the sum of the staggered FD

coefficients, Δt is the time marching step size, vmax is the maximum
P-wave velocity in the model, Δx and Δz are the horizontal and
vertical grid spacing, respectively. The single trace records of vz
in Figure 6a, 6b, and 6c are recorded by the receivers in horizontal
offsets of 25, 75, and 100 m. The simulation results from the SEM
are used for the trace comparison to check the accuracy of the
modeling. The accuracy of the synthetic Rayleigh waves generated
with the proposed vacuum formulation is confirmed by good agree-
ment of the vz records with the SEM results.
The image method is also applied to the exact same model to

simulate the seismic response in presence of topography for com-
parison. The trace data (dotted lines in Figure 6a, 6b, and 6c) illus-
trate that the free surface is correctly implemented because both the
amplitude and the arrival time of the Rayleigh waves agree with
those generated by the proposed method and the SEM. However,
the “tails” after the Rayleigh waves on records generated by the
image method are typically characteristic of numerical dispersion
(Robertsson, 1996). These numerical errors contaminate the syn-
thetic wavefield and may decrease the accuracy of the dispersion
analysis of Rayleigh waves. To suppress the numerical dispersion,
the model needs to be discretized into smaller cells so the image
method requires more ppw for the simulation of Rayleigh waves.
The corresponding time step size also needs to be reduced to ensure
the stability of the FD algorithm. This yields a cubic increase of the
computing cost with the decrease of grid spacing for a 2D model.
According to our tests, the maximum amplitude of the numerical
dispersion in the image method can be constrained to no more than
1% of the original peak amplitude of the Rayleigh waves when the
model is discretized into 0.02 × 0.02 m cells, which indiates the
image method needs approximately five times more ppw than
the proposed vacuum formulation for this application. Thus, the
proposed vacuum formulation helps reduce the computing cost
in FD modeling compared to the image method. For the modeling
tests in this paper, we employ a PC cluster with eight quad-core
nodes (total 32 logical processors). Each simulation is finished
within 26 minutes when using the improved vacuum formulation.

Figure 4. (a) Vertical particle velocities (vz) recorded for the slope
model when the slope-angle (a) θ ¼ 30°, (b) θ ¼ 45°, and (c)
θ ¼ 60°. The trace records generated by the proposed vacuum for-
mulation (solid lines) agree well with the overlain SEM results
(dashed lines).

Figure 5. A homogeneous model with the surface topography con-
taining a ridge and a valley. The star represents the location of the
source. The solid dots are receivers located on the free surface. The
grid lines illustrate the discretization scheme of the model. The grid
spacing on this figure is to show concept only. The actual grid spa-
cing for simulations in this paper is much smaller than displayed.
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The test for a same model using the stress-image method takes
roughly 10 times the computation time because the ppw has to
be increased about five times to get a same accurate result. (Specific
results of the time cost comparison may vary with the model size
and computing environments such as processor overheads and net-
work latency.)
To test the stability of the proposed vacuum formulation, we

increase the P-wave velocity in the previous homogeneous model
so that the Poisson’s ratio of the model varies from 0.25 to 0.49 and
then rerun the modeling. All the simulation results (not shown here)
are in good agreement with those computed by SEM, which indi-
cates the proposed method is stable for the tested models with high
Poisson’s ratios.
Because of the representation of many shallow structures formed

by deposition, layered earth models are usually employed in the
studies of Rayleigh waves (Xia et al., 2007b; Luo et al., 2009b;
Socco et al., 2010). Therefore, we also apply the improved vacuum
formulation to a two-layer earth model (Figure 7). This layered
earth model has the same surface topography as the previous homo-
geneous model. We change the physical parameters inside the solid
to add another interface beneath the free surface. The geometry of

the internal interface is similar but not identical to the surface
topography. This model forms an anticline and a syncline, which
is common in the real world. The physical parameters of the top
and bottom layers (labeled 1 and 2 in Figure 7) are listed in Table 2.
The high Poisson’s ratios of the top and bottom layers (about 0.45
and 0.41, respectively) are commonly seen in the near surface (Xia
et al., 2002). All the modeling parameters, such as the grid spacing,
source and receiver positions, are exactly the same as those in the
test for the model shown in Figure 5. The simplified multiaxial
perfectly matched layer (M-PML) technique (Zeng et al., 2011)
is used to ensure the stability of absorbing boundaries in this high
Poisson’s ratio earth model. We run the simulations for the same
model using fourth-order FD modeling with the proposed vacuum
formulation, the image method, and SEM, respectively. The syn-
thetic trace records of the vertical particle velocities from receiver
(horizontal) distances of 25 m (Figure 8a), 75 m (Figure 8b), and
100 m (Figure 8c) are listed for comparisons. The good agreement
of the modeling results from the proposed method and SEM illus-
trates that Rayleigh waves can be simulated along the topographic
earth surface for heterogeneous earth models using the proposed
vacuum formulation. Similar to the previous homogeneous earth
model, there is no notable numerical dispersion on the traces gen-
erated by the improved vacuum formulation compared to modeling
using the image method (dotted lines in Figure 8a, 8b, and 8c).

INCORPORATION OF INTERNAL
DISCONTINUITIES

When using the proposed vacuum formulation, grid nodes on the
topographic free-surface are updated in the exact same manner as
internal grid nodes without any special treatments. This allows the
internal discontinuities in a model to be incorporated by the same

Figure 6. Vertical particle velocities (vz) recorded in the homoge-
neous topographic model for the source-receiver distances of (a)
25 m, (b) 75 m, and (c) 100 m. The solid lines are the records gen-
erated with the proposed vacuum formulation. The dashed lines are
the results from SEM. The dotted lines are trace records simulated
with the image method.

Figure 7. Two-layer earth model with irregular surface topography.
The thickness of the top layer varies from 5 to 10 m, thus, the inter-
face geometry between layer 1 and 2 is similar but not equal to the
surface topography. The star denotes the source location on the free
surface at (10 m, 0 m). The solid dots are receivers on the free sur-
face ranging from the source to (110 m,−5 m). The trace interval in
the horizontal direction is a constant of 1 m, but varies as measured
along the free surface.

Table 2. Physical parameters of a two-layer earth model

Layer
P-wave velocity

(m∕s)
S-wave velocity

(m∕s)
Density
(kg∕m3)

1 1600 500 1800

2 2000 800 2000
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algorithm as the surface topography. Near-surface earth models that
contain internal discontinuities such as underground tunnels and
shallow cavities have been investigated in many environmental and
engineering studies (Xia et al., 2004, 2007a; Gelis et al., 2005).
Shallow tunnels are often man-made and angular. The wall of a tun-
nel can be considered as a high contrast discontinuous interface for
the propagation of seismic waves. Figure 9 shows the staggered-
grid system with the proposed vacuum formulation for a model with
a rectangular void inside an elastic medium. The interior of the void
can be considered a vacuum during the modeling because the den-
sity of air is much less than that of the surrounding materials. The
four edges of the void are free-surface boundaries and need special
treatment for FD modeling if using the image method. In contrast,
when utilizing the proposed vacuum formulation, they are naturally
incorporated as the internal interfaces with no extra operations.
Figure 10 displays the synthetic shot gather generated by the

fourth-order FD modeling with the proposed vacuum formulation
for a rectangular tunnel inside a 2D homogeneous half-space earth
model. The tunnel is 10 × 10 m with its top at a depth of 20 m.
The center of the tunnel is located exactly in the middle of the
100-channel receiver array. The nearest offset and the receiver

interval are both 1 m. To increase the resolution of the seismogram,
we use a 50-Hz Ricker wavelet. The source excites vertically on the
free surface to generate strong Rayleigh waves. The P-wave veloc-
ity, the S-wave velocity, and the mass density of the half-space are
listed in Table 1. The PML absorbing technique is applied to the
left, right, and bottom edges of the model. The Rayleigh-wave
diffractions from the corners of the tunnel are observed on the syn-
thetic record. The wavefronts of the diffracted waves are clearly
shown in the wavefield snapshot at time t ¼ 150 ms (Figure 11).
The arrival time of the diffracted Rayleigh waves on each trace
agrees with the theoretical value obtained from the traveltime

Figure 8. Vertical particle velocities (vz) recorded in the two-layer
topographic earth model for the source-receiver distances of (a)
25 m, (b) 75 m, and (c) 100 m. The solid lines are the records gen-
erated with the proposed vacuum formulation. The dashed lines are
the results from SEM. The dotted lines are results generated by the
image method.

Figure 9. Grid distribution for a model containing an internal dis-
continuity. The internal vacuum-elastic interface is attached with a
fictitious layer (the shadowed area) so that the boundary of the in-
ternal discontinuities can be incorporated using the same algorithm
at the top surface.

Figure 10. A synthetic shot gather generated for the tunnel model in
Figure 10 by fourth-order FD modeling with the improved vacuum
formulation. Diffractions are seen on the seismogram at distances
from 5 to 50 m in the time window of between 100 and 250 ms. A
large gain factor is applied to enhance the visibility of the diffracted
events.
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equation developed by Xia et al. (2007a). Detailed single-trace com-
parisons (e.g., the traces at the distances of 25 and 75 m) with the
modeling results of the SEM in Figure 12a and 12b confirm that the
P-SV-wavefield is correctly simulated by the proposed vacuum
formulation for the earth model containing internal discontinuities.

DISCUSSION

The ppw used for most simulation tests in this paper is above 90,
which is much greater than the case of conventional modeling with
planar free-surface (16 ppw, [Mittet, 2002]). More tests show that,
when a model contains only horizontal and vertical free surfaces
(e.g., the slope model in the benchmark section when θ ¼ 0°
and θ ¼ 90°), 16 ppw is sufficient to generate accurate Rayleigh
waves with no significant numerical dispersion. When there is
an oblique surface, the ppw requirement increases with the slope
angle. This is related to representing the free-surface topography
with the discretized grids in FD modeling. Figure 13 shows a syn-
thetic trace computed from the same model shown in Figure 5 at the
horizontal offset of 100 m but using 32 ppw with the proposed
method. The wavelets on the FD simulated trace are delayed
compared to the SEM result, which decreases the phase velocities
of the simulated high-frequency Rayleigh waves. This delay is also
a typical numerical error due to insufficient ppw (Dablain, 1986).
Although the proposed vacuum formulation requires stricter ppw

conditions than conventional modeling with the horizontal planar
free surface, the requirement is still reasonable for many near-
surface studies because an irregular interface needs to be discretized
in a fairly fine-grid manner for a proper approximation to suppress
the spurious diffractions caused by the staircase corners. The grid
spacing after discretization for a practical simulation usually yields
more ppw than the minimum requirement. For example, Gelis et al.
(2005) used over 30 ppw during their numerical investigation for
shallow cavities, which is already about twice the conventional cri-
tical requirement (16 ppw). Compared with the image method, the
improved vacuum formulation requires fewer ppw and would not
significantly increase the computing cost in practice.

CONCLUSIONS

The conventional vacuum formulation can be improved to satisfy
the traction-free boundary condition on the vacuum-elastic interface
to simulate accurate Rayleigh waves using fourth-order FD model-
ing in the presence of surface topography. In the improved vacuum
formulation, parameters at the surface grid nodes are averaged using
the same scheme used for the internal grid nodes. The free surface is
shifted half a grid spacing so that only the shear stress component
needs to be considered to fulfill the free-surface boundary condi-
tion. By applying arithmetic averaging for the density and harmonic
average for the shear modulus on the vacuum-elastic interface, the
free-surface boundary condition is naturally satisfied in a staggered-
grid system. Grid nodes on the free surface are updated in the same
manner as internal grid nodes without any special treatments.
Compared to the image method, the improved vacuum formulation
is easier to implement and needs fewer ppw during the modeling to
generate accurate Rayleigh waves without notable numerical dis-
persion. It is stable for the homogeneous and heterogeneous models
tested in this study that contain irregular surface topography and
internal discontinuities with Poisson’s ratios ranging from 0.25
to 0.49. Rayleigh waves can be accurately simulated along the
topographic earth surface using the improved vacuum formulation

Figure 11. A wavefield snapshot at 150 ms of the vertical particle
velocities (vz). The square represents the tunnel. The solid lines are
the interfaces of PML absorbing boundaries. The star denotes the
source on the free surface and the dots denote the 100-channel
receiver array stretching over the tunnel. The wavefronts of the dif-
fractions are visible on the snapshot.

Figure 12. Trace record at distance of (a) 25 m, and (b) 75 m that
extracted from the synthetic shot gather shown in Figure 11 (solid
lines) compared to the SEM results (dashed lines).

Figure 13. The FD computed synthetic trace (solid line) for the
model shown in Figure 5 but using only 32 ppw for the proposed
method. The SEM result is shown as a dashed line for comparison.
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with fourth-order staggered-grid FD modeling. The proposed
vacuum formulation can be easily implemented in existing 2D FD
modeling codes.
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