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ABSTRACT

Perfectly matched layer (PML) absorbing boundaries are

widely used to suppress spurious edge reflections in seismic

modeling. When modeling Rayleigh waves with the exis-

tence of the free surface, the classical PML algorithm

becomes unstable when the Poisson’s ratio of the medium is

high. Numerical errors can accumulate exponentially and ter-

minate the simulation due to computational overflows. Nu-

merical tests show that the divergence speed of the classical

PML has a nonlinear relationship with the Poisson’s ratio.

Generally, the higher the Poisson’s ratio, the faster the classi-

cal PML diverges. The multiaxial PML (M-PML) attenuates

the waves in PMLs using different damping profiles that are

proportional to each other in orthogonal directions. The pro-

portion coefficients of the damping profiles usually vary with

the specific model settings. If they are set appropriately, the

M-PML algorithm is stable for high Poisson’s ratio earth

models. Through numerical tests of 40 models with Poisson’s

ratios that varied from 0.10 to 0.49, we found that a constant

proportion coefficient of 1.0 for the x- and z-directional

damping profiles is sufficient to stabilize the M-PML for all

2D isotropic elastic cases. Wavefield simulations indicate

that the instability of the classical PML is strongly related to

the wave phenomena near the free surface. When applying the

multiaxial technique only in the corners of the PML near the

free surface, the original M-PML technique can be simplified

without losing its stability. The simplified M-PML works effi-

ciently for homogeneous and heterogeneous earth models with

high Poisson’s ratios. The analysis in this paper is based on

2D finite difference modeling in the time domain that can eas-

ily be extended into the 3D domain with other numerical

methods.

INTRODUCTION

With the increasing demands on environmental and engineer-

ing studies, modeling seismic wave propagation in the near sur-

face is essential and fundamental. The relationship between

Rayleigh-wave phase velocity and frequency has been widely

utilized to estimate the S-wave velocities in shallow layers

(Nazarian and Stokoe, 1984; Xia et al., 1999, 2003, 2006;

Calderón-Macı́as and Luke, 2007; Socco et al., 2010). Hence,

generating synthetic records containing accurate Rayleigh-wave

information is a primary objective of any near-surface seismic

modeling task. High Poisson’s ratio earth models are often

employed in the near-surface studies. Many near-surface materi-

als are unlithified and have much higher Poisson’s ratios than

the sedimentary rocks. For example, Xia et al. (2002) showed

that the materials of upper 7 m at a mining site in Wyoming,

U.S.A., have the Poisson’s ratio of about 0.48. They also

reported that the unconsolidated sediments of the Fraser River

Delta near Vancouver, Canada, have the Poisson’s ratio of about

0.49, which is close to the maximum theoretical Poisson’s ratio

(0.5). Modeling Rayleigh waves in high Poisson’s ratio earth

models is critical to many near-surface geophysical studies.

Rayleigh waves can be simulated through numerical methods,

such as finite-difference (FD) method, by applying appropriate

free-surface boundary conditions (e.g., Mittet, 2002; Xu et al.,

2007). Absorbing boundary conditions are usually employed to

suppress spurious reflections from the truncated edges of a

finite-sized discrete earth model. Cerjan et al. (1985) introduced

a sponge-layer absorbing boundary condition for discrete elastic

wave equations. The absorbing effectiveness of this method
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depends to a large extent on the distance that the waves propagate

in the transition zone. The damping strip has to be wide enough

to yield satisfactory attenuation results, thereby greatly increasing

the computational expense. Bérenger (1994) developed an

improved absorbing boundary condition for attenuating electro-

magnetic waves. This technique utilizes an absorbing layer called

the perfectly matched layer (PML) to generate a nonreflecting

interface between the artificial boundary and the free medium.

Subsequently, the PML method was successfully introduced to

elastic wavefield studies (Chew and Liu, 1996; Collino and

Tsogka, 2001). It is now the most widely used technique for

solving the spurious reflection problem in seismic modeling.

The PML method is based on a nonphysical modification to

the wave equation inside the absorbing strip so that the theoreti-

cal reflection coefficient at the strip-model interface is zero. It

allows reduction in the width of the transition zone to nearly

25% of the classical sponge absorbing methods (Carcione et al.,

2002). Festa and Nielsen (2003) show that the PML method is

efficient in the presence of strong Rayleigh waves.

For near-surface seismic modeling, Rayleigh waves dominate

the P-SV (the coupling of compressional waves and the vertical

components of shear waves) wavefield (e.g., Xia et al., 2002;

Saenger and Bohlen, 2004). Compared to conventional seismic

modeling that focuses on P-waves, a higher spatial sample density

of grid points per wavelength (ppw) is required to avoid the

numerical dispersion of Rayleigh waves during the model discre-

tization procedure (Mittet, 2002). The increased spatial sample

density causes an increase in the number of model grids over

those in conventional seismic modeling, costing more computer

memory and central processing unit (CPU) time. Employing the

PML technique can tremendously reduce the cost of computation.

However, in many cases the performance of classical PML

absorption (refer to the implementation of Collino and Tsogka

[2001]) does not meet the expectations of near-surface seismic

modeling. For a fine grid near-surface earth model, the time step

size during the FD modeling is usually less than 0.1 ms so that

the Courant-Friedrichs-Lewy (CFL) condition is satisfied to

ensure the stability of the modeling algorithm. In this case, the

number of time marching loops is greater than 10,000 to generate

a synthetic record of 1-s time length. The accumulative errors can

be significant, which makes the PML algorithm diverge and

causes a computational instability problem during the modeling.

Komatitsch and Martin (2007) introduced a convolutional PML

(C-PML) technique as a general representation of the classical

PML method to improve the absorbing effectiveness at grazing

incidence. However, the instability problem still appears in simu-

lations performed for long time duration.

Physical properties of the medium can cause the PML algo-

rithm to be intrinsically unstable. For some anisotropic media

reported by Bécache et al. (2003), the classical PML and C-PML

techniques suffer from the instability problem (Komatitsch and

Martin, 2007). For a near-surface medium that has a high Pois-

son’s ratio (>0.4), we also found that neither the classical PML

nor the C-PML is stable even for a simple isotropic elastic case

with the existence of the free surface. The application of the

classical PML to modeling Rayleigh waves in near-surface

materials is challenging due to the instability of PML in high

Poisson’s ratio earth models.

Classical PML and C-PML techniques can be considered uni-

axial PML methods. Waves in uniaxial PMLs are attenuated in

only one direction using a unique damping factor. Mesa-Fajardo

and Papageorgiou (2008) conducted a comprehensive mathemati-

cal analysis on the stability of the classical PML method. They

further developed a multiaxial PML (M-PML) method through

eigenvalue sensitivity analysis that improved on the stability of the

original method (PML). The M-PML is based on a more general

coordinate stretching version of the classical split-field PML, in

which the waves are attenuated in all directions with different

damping factors (hence the name “multiaxial”). A stable M-PML

algorithm can be constructed by tuning the proportion coefficients

of the damping factors according to the settings of a specific

model. This approach was successfully applied to modeling seis-

mic waves in an orthotropic medium (Mesa-Fajardo and Papageor-

giou, 2008), where the classical PML is intrinsically unstable.

In this paper, we present the instability problem of the classi-

cal uniaxial PML commonly observed in media with different

Poisson’s ratios. In the numerical tests a critical Poisson’s ratio

can be estimated as the lowest value of the ratio when the PML

becomes unstable. Then we test the stability of the M-PML

method using the same models with various Poisson’s ratios.

We also show that the multiaxial technique is only necessary

for the model grids that are near the free surface. Based on this

observation, we slightly simplified the original M-PML by set-

ting the absorbing zones only near the free surface to be multi-

axial. Finally, we demonstrate the stability of this simplified

M-PML through its application to a layered near-surface earth

model. The analysis presented here is based on time domain, 2D

finite-difference modeling. However, the simplification of the

M-PML approach can be extended in a straightforward fashion

to the 3D case using other numerical methods such as finite-

element, pseudospectral, and spectral-element methods.

MODELING OF RAYLEIGH WAVES WITH

CLASSICAL PML

The vector wave equation in an isotropic medium (Aki and

Richards, 2002) is

q€u ¼ f þ kþ 2lð Þr r � uð Þ � lr� r� uð Þ; (1)

where q is the mass density, u is the displacement vector, €u is

the second derivative of the displacement vector with respect to

time, f is the body force vector, and k and l are the Lamé coef-

ficients. A first-order velocity-stress form of the wave equation

can be formulated by differentiating the displacement field with

respect to time. In a 2D vertical plane, it can be written as

the following set of equations with the stress-strain relations

(Virieux, 1986):

ovx

ot
¼ b

osxx

ox
þ osxz

oz

� �

ovz

ot
¼ b

osxz

ox
þ oszz

oz

� �

osxx

ot
¼ kþ 2lð Þ ovx

ox
þ k

ovz

oz
oszz

ot
¼ kþ 2lð Þ ovz

oz
þ k

ovx

ox
osxz

ot
¼ l

ovx

oz
þ ovz

ox

� �
; (2)
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where (vx, vz) is the particle velocity vector, bðx; zÞ is the buoyancy

(the reciprocal of mass density), (sxx, szz, sxz) is the stress vector,

and t is the time variable. The initial condition is that at time t¼ 0,

all the velocities and stresses are set to zero throughout the model.

A discretization procedure can be performed using the well-known

Madariaga-Virieux staggered grid scheme (Madariaga, 1976;

Virieux, 1986) to ensure the stability in a heterogeneous medium

with large variations of Poisson’s ratio. We use the staggered-grid

form presented by Graves (1996) with fourth-order accurate space

and second-order accurate time (Levander, 1988) during imple-

mentation of the FD modeling. For the grids located on the free

surface, parameters are updated through a fourth-order FD scheme

developed by Kristek et al. (2002). For the internal model grids, a

parameter averaging technique proposed by Moczo et al. (2002) is

used to improve model stability. By applying a source excitation to

the velocity components, particle velocities can be calculated

through a time marching scheme. Rayleigh waves can be modeled

with the simulation of P-SV wave propagation.

The PMLs are attached by surrounding the physical domain

of the model with three transition strips on the left, right, and

bottom sides, respectively (Figure 1). They can be interpreted

by the continuation of the physical model domain using a coor-

dinate stretching theory (Chew and Liu, 1996). By constructing

a PML differential operator and decomposing the stresses and

velocities in orthogonal directions, the 2D wave equation can be

rewritten as (Collino and Tsogka, 2001)

vx ¼ vx
x þ vz

x; vz ¼ vx
z þ vz

z

ot þ dxð Þvx
x ¼ b

osxx

ox

ot þ dzð Þvz
x ¼ b

osxz

oz

ot þ dxð Þvx
z ¼ b

osxz

ox

ot þ dzð Þvz
z ¼ b

oszz

oz
; (3)

with the stress-strain relations:

sxx ¼ sx
xx þ sz

xx; szz ¼ sx
zz þ sz

zz; sxz ¼ sx
xz þ sz

xz

ot þ dxð Þsx
xx ¼ kþ 2lð Þ ovx

ox

ot þ dzð Þsz
xx ¼ k

ovz

oz

ot þ dxð Þsx
zz ¼ k

ovx

ox

ot þ dzð Þsz
zz ¼ kþ 2lð Þ ovz

oz

ot þ dxð Þsx
xz ¼ l

ovz

ox

ot þ dzð Þsz
xz ¼ l

ovx

oz
; (4)

where dx and dz are the PML damping profiles along x (horizon-

tal) and z (vertical) directions, respectively. The superscript x and

z represent the split PML components in x- and z-directions,

respectively. This is a nonphysical decomposition to the velocity

and stress vectors so as to accommodate the attenuation algorithm

of PML. Within the physical model domain, dx and dz are zero so

that equations 3 and 4 degrade to equation 2. If the damping pro-

files in the PMLs are well designed, waves can be attenuated

with no significant spurious reflections coming from either the

truncated model edges or the interfaces of the PMLs and the

physical model domain.

In the classical PML, waves are only attenuated in one direc-

tion (uniaxial). For example, within the left and right PMLs

shown in Figure 1, only the damping factor along the x-direction

is nonzero. That is

dx ¼ dxðxÞ; dz ¼ 0: (5)

Similarly, within the bottom PML, only the damping profile

along the z direction takes effect:

dx ¼ 0; dz ¼ dzðzÞ: (6)

For the bottom-left and bottom-right corners, the x and z damp-

ing profiles naturally superpose together, making the wave

decay in all the directions. However, for the upper-left and

upper-right corners, the PMLs should attenuate the waves in

only the x-direction. Otherwise strong spurious reflections of

Rayleigh waves will occur at the interface between the PML

and the physical domain.

The classical PML method works efficiently when the Pois-

son’s ratio of a medium is low. Figure 2 displays wavefield sim-

ulation snapshots (particle velocities in the z-direction) when a

point source vertically excites the free surface of a Poisson’s

solid model (the Poisson’s ratio r¼ 0.25). The source wavelet is

the first derivative of the Gaussian function defined as

wðtÞ ¼ 2pf ðt� t0Þe�p2f 2ðt�t0Þ2 ; (7)

where f is the dominant frequency, and t0 is the time zero delay.

Because the effectiveness of PML absorption is independent of

the source frequency according to its developing procedure

(Bérenger, 1994; Collino and Tsogka, 2001), we use f¼ 50 Hz

and t0¼ 24 ms for all the examples provided in this paper unless

otherwise stated. For the models in Figure 2, the minimum PML

Figure 1. A sketch of the PML absorbing layers in a 2D domain.
The physical model domain is surrounded by three PMLs. The
arrows represent the attenuation direction of the waves inside
PMLs. For the lower-left and lower-right corners of the PMLs,
the damping profiles are superposed together naturally. For the
implementation of uniaxial PML technique, the overlapping in the
corner has only two components. While in the M-PML technique,
it is implemented by the superposition of four damping profiles.
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thickness is only 1=4 of the dominant wavelength of the

P-waves. The body waves and Rayleigh waves decay in the

PMLs with no significant spurious reflections.

STABILITY TESTS OF CLASSICAL PML FOR

NEAR-SURFACE EARTH MODELS

The complexity of shallow earth materials can make the

application of classical PML challenging. A common factor that

yields instability is a high Poisson’s ratio in the near surface

medium. Many unlithified materials in the near surface have

Poisson’s ratios greater than 0.4. Some near-surface materials

such as saturated sand can even have a Poisson’s ratio close to

0.5. In those media, the near-surface wavefield is complicated

due to the intricate interaction of various waves with the free

surface. A high Poisson’s ratio near the free surface introduces

difficulties to the absorption of PMLs for near-surface earth

models. Numerical errors can be accumulated to significant val-

ues in the PMLs after discretization. The classical uniaxial PML

algorithm is unstable during the modeling even for a simple

isotropic elastic case when the Poisson’s ratio is high.

Figure 3 shows the wavefield snapshots for a homogeneous

half-space earth model. The P-wave velocity (vp) and S-wave

velocity (vs) in the model are 520 m=s and 102 m=s, respec-

tively. The high vp=vs ratio yields a high Poisson’s ratio of 0.48.

The mass density (q) in the model is 1.5� 103 kg=m3. A point

source is excited vertically at (x, z)¼ (50 m, 0 m). For the

FD implementation, the model is uniformly discretized into

0.1� 0.1 m cells so that the grid sample density is sufficient

(ppw> 32). The time step size is chosen as 0.05 ms to ensure

the FD algorithm is numerically stable. The PML thickness in x
and z-directions are 10 m, which is about a dominant wave-

length of the P-waves.

On the snapshot at t¼ 115 ms (Figure 3a and e), the body

waves enter the bottom PML with no significant spurious reflec-

tions from the PML and physical model domain interface. Simi-

larly, the waves are attenuated immediately after they enter the

left and right PMLs at t¼ 132 ms (Figure 3b and f). However,

when the wavefronts approach the left and right

external model edges, the absorption in the left

and right PMLs does not meet expectations.

Small numerical errors appear at the upper-left

and upper-right corners of the PMLs on the

t¼ 139 ms snapshot (Figure 3c and g). With

time marching, the amplitudes of particle veloc-

ities near the model edges increase exponen-

tially (e.g., the snapshot in Figure 3d and h).

The error propagates with spurious reflections

from the model edges and accumulates abruptly

in the PML. This indicates the PML algorithm

loses its stability for this model. The computa-

tion is finally terminated after about 2980 time

marching loops due to the numerical overflow.

To test if the instability is caused by the

model discretization, we change the model

parameter configuration by reducing the grid

spacing of the model to 0.025� 0.025 m and

run the simulation again. The physical thickness

of the PML is still 10 m. In this case, the spatial

grid sample density in the PML is 16 times of

that in the previous simulation. The time step

size is also reduced to 0.0125 ms. This is a finer

discretization than the previous configuration.

The computation is terminated after about

10,720 time marching loops, which is much

greater than the number in the previous test.

Comprehensive tests show that the program sur-

vives with different loop times with various

model settings (e.g., grid spacing, time step

size, etc.). This confirms that the instability of

the PML is related to the discretization of the

model and mainly controlled by the accumu-

lated numerical errors.

Although the mathematical analysis on the

stability of PML methods is presented by Meza-

Fajardo and Papageorgiou (2008), there is no

conclusive criterion related to the model’s phys-

ical parameters to indicate under what condi-

tions the classical PML is unstable. However,

Figure 2. (a) Snapshot of the vertical particle velocity for a Poisson’s solid homoge-
neous half-space earth model with the classical PML at time instant t¼ 250 ms. Solid
lines are the interfaces between the PML and the physical model domain. The source
is located at (x, z)¼ (100 m, 0 m). The P-wave velocity, S-wave velocity, and mass
density in the model are 520 m=s, 300 m=s, and 1.5� 103 kg=m3, respectively. The
width of the left and right PMLs are 4 m. The width of the bottom PML is 2.6 m. The
body wave and surface wave are attenuated efficiently without significant spurious
reflections. (b) Snapshot of the vertical particle velocity for a Poisson’s solid homoge-
neous half-space earth model with the classical PML at time instant t¼ 350 ms. Solid
lines are the interfaces between the PMLs and the physical model domain. The source
is located at (x, z)¼ (100 m, 0 m). The P-wave velocity, S-wave velocity, and mass
density in the model are 520 m=s, 300 m=s, and 1.5� 103 kg=m3, respectively. The
width of the left and right PMLs are 4 m. The width of the bottom PML is 2.6 m. The
body wave and surface wave are attenuated efficiently without significant spurious
reflections. (c) Snapshot of the vertical particle velocity for a Poisson’s solid homoge-
neous half-space earth model with the classical PML at time instant t¼ 450 ms. Solid
lines are the interfaces between the PMLs and the physical model domain. The source
is located at (x, z)¼ (100 m, 0 m). The P-wave velocity, S-wave velocity, and mass
density in the model are 520 m=s, 300 m=s, and 1.5� 103 kg=m3, respectively. The
width of the left and right PMLs are 4 m. The width of the bottom PML is 2.6 m. The
body wave and surface wave are attenuated efficiently without significant spurious
reflections. (d) Snapshot of the vertical particle velocity for a Poisson’s solid homoge-
neous half-space earth model with the classical PML at time t¼ 550 ms. Solid lines
are the interfaces between the PMLs and the physical model domain. The source is
located at (x, z)¼ (100 m, 0 m). The P-wave velocity, S-wave velocity, and mass den-
sity in the model are 520 m=s, 300 m=s, and 1.5� 103 kg=m3, respectively. The width
of the left and right PMLs are 4 m. The width of the bottom PML is 2.6 m. The body
wave and surface wave are attenuated efficiently without significant spurious
reflections.
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by comparing the unstable modeling results in Figure 3 with

those in Figure 2 where the classical PML works well, it sug-

gests that the stability of the classical PML is closely related to

the values of Poisson’s ratios.

Numerical testing is a convenient way to provide an estima-

tion how the Poisson’s ratio affects the stability of the classical

PML. Here we test 40 models with Poisson’s ratios varying

from 0.10 to 0.49. The detailed physical parameters of the mod-

els are listed in Table 1. All the models are constructed with a

50� 50 m physical domain surrounded by three 10-m-wide

PMLs. The P-wave velocity and mass density remain constants

in all the 40 models as 520 m=s and 1.5� 103 kg=m3, respec-

tively. The point source is horizontally centered on the free sur-

face. The grid spacing in the x- and z-directions is 0.1 m. The

simulation time is 2 s with a time marching step size of 0.05

ms. The maximum number of time marching loops is 40,000,

which is large enough to allow the error to accumulate to a sig-

nificant value if the PML algorithm is unstable.

Because all the test models are homogenous, the kinetic

energy E ¼ 1
2

mv2 for each particle of the model can be com-

pared directly using the amplitude of the velocities. For the

source wavelet defined in equation 7, the maximum velocity

value of the source particle is less than 1.0 m=s. Consequently,

in accordance with the laws of energy conservation none of the

particle velocity amplitudes in the model can be greater than 1.0

m=s. However, if the PML algorithm is divergent, this threshold

can be exceeded due to the rapid accumulation of numerical

errors. So the PML algorithm would be considered unstable

once the velocity threshold is broken during the modeling time

marching procedure. The modeling program is designed to ter-

minate immediately in this situation. Table 1 lists the maximum

number of time marching steps for each model. When the num-

ber of time marching steps is 40,000 the modeling was com-

pleted without an abnormal termination. In other words, the

PML algorithm is stable for the corresponding model. Any num-

ber less than 40,000 indicates the program terminated due to the

instability in the PML algorithm.

From Table 1 we conclude that the classical PML is unstable

if the Poisson’s ratio of the model is greater than about 0.38.

Figure 4 also indicates that the relationship between the rate of

divergence in the PML and the Poisson’s ratio is nonlinear

because of the different exponential accumulation speed of the

numerical errors. Generally, the higher the Poisson’s ratio, the

faster the classical PML algorithm diverges. The error accumu-

lates exponentially with the increase of Poisson’s ratio. When

the Poisson’s ratio is greater than 0.4, none of the simulations

can survive more than 8000 loops.

M-PML TECHNIQUE AND ITS STABILITY FOR

NEAR-SURFACE EARTH MODELS

The M-PML technique was developed by Meza-Fajardo and

Papageorgiou (2008) to solve the instability problem of classical

PML. The basic idea of the M-PML is that the waves simultane-

ously decay with multiple damping profiles in orthogonal direc-

tions. The damping profiles are proportional to each other. For

example, in the 2D PML model shown in Figure 1, the damping

profile along the x direction can be defined as

Figure 3. (a) Snapshot of the horizontal (vx) and
vertical (vz) particle velocities for a high Pois-
son’s ratio earth model with the classical PML vx
at t¼ 115 ms. (b) Snapshot of the horizontal (vx)
and vertical (vz) particle velocities for a high
Poisson’s ratio earth model with the classical
PML vx at t¼ 132 ms. (c) Snapshot of the hori-
zontal (vx) and vertical (vz) particle velocities for
a high Poisson’s ratio earth model with the clas-
sical PML vx at t¼ 139 ms. (d) Snapshot of the
horizontal (vx) and vertical (vz) particle velocities
for a high Poisson’s ratio earth model with the
classical PML vx at t¼ 149 ms. (e) Snapshot of
the horizontal (vx) and vertical (vz) particle veloc-
ities for a high Poisson’s ratio earth model with
the classical PML vz at t¼ 115 ms. (f) Snapshot
of the horizontal (vx) and vertical (vz) particle
velocities for a high Poisson’s ratio earth model
with the classical PML vz at t¼ 132 ms. (g)
Snapshot of the horizontal (vx) and vertical (vz)
particle velocities for a high Poisson’s ratio earth
model with the classical PML vz at t¼ 139 ms;
numerical errors present at the upper-left and
upper-right corners. (h) Snapshot of the horizon-
tal (vx) and vertical (vz) particle velocities for a
high Poisson’s ratio earth model with the classi-
cal PML vz at t¼ 149 ms; Numerical errors accu-
mulate to significant values at the upper-left and
upper-right corners.
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dx ¼ dx
xðxÞ; dz ¼ pðz=xÞdx

xðxÞ; (8)

where p(z=x) is the proportion coefficient in either the left or

right PML. Similarly, the damping profile along the z direction

can be defined as

dx ¼ pðx=zÞdz
zðzÞ; dz ¼ dz

zðzÞ; (9)

where p(x=z) is the proportion coefficient in the bottom PML.

Equations 8 and 9 can be considered generalizations of equa-

tions 6 and 7 for the classical uniaxial PML. When the propor-

tion coefficient is zero, the multiaxial PML profiles in equations

8 and 9 degrade to the uniaxial profiles. A key characteristic of

M-PML is that a single velocity=stress vector is attenuated in

multiple directions. While in uniaxial PML, a single vector is

always attenuated in only one direction.

Meza-Fajardo and Papageorgiou (2008) suggested the

M-PML is stable for an isotropic medium with the existence of

surface waves. In their model example, the Poisson’s ratio is

about 0.24. For such a model, the instability problem of classi-

cal PML only appears if the simulation is performed over the

long time duration. It was reported by Festa et al. (2005) that

the C-PML technique is more stable than the classical PML for

their model. However, in our test the last 10 models listed in

Table 1 whose Poisson’s ratios are greater than 0.39 diverge

quickly for the classical PML and C-PML algorithm.

Models listed in Table 1 are used again for the numerical

tests designed to check the stability of the M-PML algorithm for

near-surface earth models with high Poisson’s ratios. All model

parameters are exactly the same as those used in the previous

analysis of classical PML. The only difference is the use of the

multiaxial technique. During implementation, the proportion

coefficients p(z=x) and p(x=z) were set to 1.0. No violation of the

velocity threshold was observed during the modeling tests. The

M-PML algorithm is convergent and stable for all models with

Poisson’s ratios that vary from 0.10 to 0.49.

To demonstrate the stability of the M-PML technique and its

absorbing effectiveness, we apply the M-PML technique to the

homogeneous half-space model (Figure 3) where the classical

uniaxial PML is unstable. Figure 5 presents the wavefield snap-

shots of vertical particle velocities at the same time instants as

shown in Figure 3. Prior to the wavefronts reaching the external

model edges (Figure 5a and 5b), the M-PMLs appear similar to

the classical uniaxial PMLs. For the t¼ 139 ms (Figure 5c) and

t¼ 149 ms (Figure 5d), no significant numerical error appears in

the snapshots for the M-PML technique. The simulation com-

pleted successfully without violating the thresholds detailed for

previous numerical tests.

THE SIMPLIFIED M-PML AND ITS APPLICATION

It is noteworthy that the only numerical errors appear in the

upper part of the left and right PMLs near the free surface in

the wavefield snapshots in Figure 3. In the bottom PML where

only body waves exist, the classical PML works efficiently with

no significant accumulative errors. A range of numerical tests

(detailed results not shown here) run on the models with various

Poisson’s ratios result in similar observations. The snapshots

from the tests suggest the initial significant numerical error

always comes from the upper-left and upper-right corner of the

PMLs (for the 2D case) due to the existence of the free surface.

Figure 6a displays the wavefield snapshots for a model using

the classical PML without a free surface. The model is a

Table 1. Physical parameters of the models for stability tests
of classical PML.

r vp=vs vs (m=s) Termination loop

0.10–0.25 1.50–1.73 347–300 40000

0.26 1.76 296 40000

0.27 1.78 292 40000

0.28 1.81 287 40000

0.29 1.84 283 40000

0.30 1.87 278 40000

0.31 1.91 273 40000

0.32 1.94 268 40000

0.33 1.99 262 40000

0.34 2.03 256 40000

0.35 2.08 250 40000

0.36 2.14 243 40000

0.37 2.20 236 40000

0.38 2.27 229 40000

0.39 2.35 221 18702

0.40 2.45 212 7834

0.41 2.56 203 5122

0.42 2.69 193 3863

0.43 2.85 182 3153

0.44 3.06 170 2707

0.45 3.32 157 2400

0.46 3.67 142 2149

0.47 4.20 124 1941

0.48 5.10 102 1772

0.49 7.14 73 1653

Figure 4. A nonlinear relation between the divergence speed of
the classical PML and the values of Poisson’s ratios, where n is
the loop index when the program terminates due to the violation
of velocity threshold, and r is the Poisson’s ratio. The dots are the
computed (r, n) values extracted from Table 1 when the classical
PML is unstable.
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100 � 100 m homogeneous unbounded medium. Four classical

PMLs are attached at each edge of the model. The source is

located at the center (x¼ 50 m, z¼ 50 m) of the model. The physi-

cal parameters (vp, vs, and q) are exactly the same as those used

for the model in Figure 3. The classical PML is unstable when the

free surface exists in this high Poisson’s ratio medium. However,

when there is no free surface, the only seismic waves in the me-

dium are the body waves (P-waves and S-waves). In Figure 6b,

the P-wave and S-wave are efficiently absorbed by the PMLs with

neither spurious reflections nor significant accu-

mulative errors. The classical PML is stable with-

out the existence of the free surface even when

the Poisson’s ratio is high. This is consistent with

the claim that the instability of the classical uniax-

ial PML for the earth models with high Poisson’s

ratios is due to the existence of the free surface.

Specifically, the instability of the classical PML is

mainly influenced by the complex wave phenom-

ena related to the free surface.

The amplitude of Rayleigh waves decays

exponentially with increasing depth. For a

model with a large vertical dimension, the

energy of Rayleigh waves near the bottom edge

is usually weak enough to be negligible. In this

case, the multiaxial technique for the bottom

PML is unnecessary because only body waves

are involved. Moreover, the algorithm is stable

for the left and right absorbing strips after only

applying the multiaxial technique to the upper

part of the PMLs. Hence, the M-PML can be

simplified so that only the upper-left and upper-

right corners need multiple damping profiles.

For other parts of the PML strips, only one

damping profile is used consistent with the clas-

sical uniaxial PML technique. This can reduce

the memory cost for storing M-PML profiles

during program implementation. It also has the

potential to save CPU time for large scale mod-

eling because there is no need to compute the

terms with multiple PML damping coefficients

outside the upper-left and upper-right corners.

Waves in the M-PMLs are attenuated expo-

nentially in x- and z-directions due to the intro-

duction of the proportional damping profiles.

For Rayleigh waves whose amplitudes already

decrease exponentially with increasing of depth,

the energy reduces much faster than that of

body waves in the vertical direction. Modeling

tests show that a satisfactory absorbing effec-

tiveness can be archived in most cases by set-

ting the vertical thickness of the upper M-PML

zone to a half of the dominant wavelength of

the P-waves near the free surface.

In theory, the horizontal interface between the

upper M-PML zone and beneath the uniaxial

PML zone in the simplified M-PML method

will generate spurious reflections due to the ab-

rupt change of absorbing parameters in the ver-

tical direction. The spurious reflections could

propagate as multiples to the free surface and

contaminate the synthetic wavefield. However, these spurious

reflections are negligible in practice when modeling Rayleigh

waves in near surface materials if the thickness of the upper M-

PML zone is set appropriately. This is because the energy of the

Rayleigh waves at the interface between the M-PML and the

uniaxial PML is already attenuated to be weak enough compar-

ing to its original value on the free surface. The spurious reflec-

tions from the body waves are also insignificant because their

maximum amplitudes after attenuation are usually less than 1%

Figure 5. (a) Snapshot of the vertical particle velocities for the exactly same model
used in Figure 3 but with the M-PML applied. The time instant is t¼ 115 ms. No sig-
nificant numerical errors are observed. The simulation was also completed with no
violation to the velocity threshold. (b) Snapshot of the vertical particle velocities for
the exactly same model used in Figure 3 but with the M-PML applied. The time
instant is t¼ 132 ms. No significant numerical errors are observed. The simulation
was also completed with no violation to the velocity threshold. (c) Snapshot of the
vertical particle velocities for the exactly same model used in Figure 3 but with the
M-PML applied. The time instant is t¼ 139 ms. No significant numerical errors are
observed. The simulation was also completed with no violation to the velocity thresh-
old. (d) Snapshot of the vertical particle velocities for the exactly same model used in
Figure 3 but with the M-PML applied. The time instant is t¼ 149 ms. No significant
numerical errors are observed. The simulation was also completed with no violation
to the velocity threshold.

Figure 6. (a) Snapshot of the vertical particle velocity for an unbounded homogene-
ous earth model with classical PML. The Poisson’s ratio of the medium is 0.48. The
source is located at the center of the model. Snapshot at t¼ 149 ms, when the P-wave
enters the PMLs. Figure 6a and 6b illustrate that the classical PML is stable without
the existence of the free surface even when the Poisson’s ratio is high. (b) Snapshot of
the vertical particle velocity for an unbounded homogeneous earth model with classi-
cal PML. The Poisson s ratio of the medium is 0.48. The source is located at the center
of the model. Snapshot at t¼ 600 ms, when the S-wave enters the PMLs. Figure 6a
and 6b illustrate that the classical PML is stable without the existence of the free sur-
face even when the Poisson s ratio is high.
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of the peak amplitude of the Rayleigh waves in the high Pois-

son’s ratio earth models.

The simplified M-PML is stable through the numerical tests

with all the models listed in Table 1. Furthermore, we find

through numerical modeling that a constant proportion coeffi-

cient p(z=x)¼ p(x=z)¼ 1.0 can make the M-PML stable for all the

models regardless of Poisson’s ratios. The values used in Meza-

Fajardo and Papageorgiou’s (2008) tests (0.1 and 0.15) for iso-

tropic media; however, cause instability of M-PML for our cases.

For heterogeneous earth models, the simplified M-PML is still

stable and efficient. A two layered earth model (Xia et al.,

2007) is used to demonstrate the application of the simplified

M-PML to a heterogeneous medium. The model’s physical pa-

rameters are listed in Table 2. The dispersion image extracted

from the synthetic record, which indicates the relationship of

Rayleigh-wave phase velocities and the frequencies, can be used

to verify the accuracy of the simulation. If the synthetic record

is not contaminated by spurious reflections, the energy concen-

tration on the dispersion image should match the theoretical dis-

persion curves. Figure 7 is the synthetic shot gather for the

model generated by FD modeling with the simplified M-PML

technique. The source is a first derivative of the Gaussian func-

tion with dominant frequency f¼ 20 Hz and time zero delay

t0¼ 60 ms. The trace interval and the nearest offset are 1 m.

The proportion coefficients for the PML damping profiles in x
and z directions are 1.0. There are no significant spurious reflec-

tions observed on the shot gather. The dispersion image (Figure

8) generated by the high resolution linear Radon transform (Luo

et al., 2008) agrees well with the theoretical dispersion curves

(Schwab and Knopoff, 1972), which indicates the Rayleigh-

wave information is accurately modeled without contamination

from spurious reflections or numerical errors.

DISCUSSION

The snapshots in Figure 3 indicate that the numerical errors

always arise from the corner of the free surface and the truncated

edges of the model. In Figure 3c, significant error appears imme-

diately after the wavefronts of the P-S (compressional wave to

shear wave) converted waves on the free surface touched the trun-

cated boundary. For the tests in this paper, the physical truncation

on the model edge is implemented by the Dirichlet boundary con-

ditions. However, the tests without the Dirichlet boundary condi-

tions also yield the instability. Another simulation with a vertical

free surface didn’t survive either. The detailed generation mecha-

nism of these numerical errors needs sophisticated mathematical

error analysis. However, it can be concluded that the instability is

a combination effect of the free surface condition on the top and

the physical truncation on the left and right edges in a high Pois-

son’s ratio earth model.

To test the stability of the classical PML incorporating with

internal interface where high Poisson’s ratio appears, we per-

formed a modeling for a two-layered earth model, whose top

layer is a Poisson’s solid (r¼ 0.25) and bottom layer has a high

Poisson’s ratio of 0.48. The simulation completed without any

instability observed. This suggests that the instability of the uni-

axial PML is controlled by the high Poisson’s ratio materials

near the free surface.

Mesa-Fajardo and Papageorgiou (2008) point out that the

M-PML proportion coefficients need to take higher values to

stabilize the medium when the damping profiles grow fast.

When small damping ratios are used, the M-PML has to be

thick enough to yield stable absorptions. In near-surface model-

ing that focuses on Rayleigh waves, the absorbing boundary

Table 2. Physical parameters of a layered earth model (Xia
et al., 2007).

Layer Thickness (m) vp (m=s) vs (m=s) q (kg=m3) r

1 10 800 200 2000 0.47

2 1 (half-space) 1200 400 2000 0.44

Figure 7. Synthetic shot gather for a two-layer
earth model (Xia et al., 2007) using the simpli-
fied M-PML technique. Rayleigh waves are dis-
persive due to the heterogeneity of the medium.
There are no significant spurious reflections on
the shot gather.
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layers are usually designed to be as thin as possible to reduce

the computational cost due to the employment of small grid

spacing. This impels us to use relatively greater values (e.g.,

1.0) than those used in Mesa-Fajardo and Papageorgiou’s exam-

ples (0.1 and 0.15). However, high values of the proportion

coefficients increase the spurious reflections due to the reflection

coefficients of PML being nonzero after discretization. The

value of 1.0 for the proportion coefficients used in this paper is

a compromised solution that can stabilize the M-PML with ac-

ceptable absorbing effectiveness for the most near-surface earth

models. Optimum values of the proportion coefficients may dif-

fer from the proposed value depending on the specific model

settings.

CONCLUSIONS

The classical uniaxial PML technique is unstable for near-

surface earth models when the Poisson’s ratio is high (greater

than 0.38 in our test examples). The higher the Poisson’s ratio,

the faster the classical PML algorithm diverges. The existence of

the free surface is the reason for this instability. The free-surface

related complex wave phenomena play important roles in the fast

accumulation of numerical errors inside the PMLs. Numerical

tests on the models with Poisson’s ratios vary from 0.10 to 0.49

and demonstrate that the M-PML technique is stable if the propor-

tion coefficient of the PML damping profiles is set appropriately.

For 2D seismic modeling focusing on Rayleigh waves, the multi-

axial technique is only necessary for the free space (upper-left

and upper-right) corners of the PML. For the other grids inside

the PMLs, the conventional uniaxial PML is stable enough to

absorb the spurious reflections. Numerical tests show that the pro-

portion coefficients of the multiaxial PML damping profiles in

x- and z-directions can be set to a constant of 1.0. For isotropic

elastodynamics, this constant proportion coefficient is sufficient

to make the M-PML algorithm stable for all models regardless of

Poisson’s ratio. The M-PML can be simplified without losing its

stability by implementing the multiaxial technique only to the

upper corners of the PMLs near the free surface. For homogene-

ous and heterogeneous earth models with high Poisson’s ratios,

Rayleigh waves can be simulated accurately through the applica-

tion of this simplified M-PML technique. All the analysis in this

paper is based on 2D FD modeling in the time domain; however,

extension to the 3D domain is straightforward.
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