Detecting subsurface objects and identifying voids possibilities using seismic diffractions
Julian Ivanov,* Richard D. Miller, Shelby L. Peterie, and Anthony M. Hock, Kansas Geological Survey

Summary
We used a synthetic seismic waves modeling approach to study the possibilities to detect and, in some instances differentiate, subsurface objects from diffracted or scattered seismic energy. In addition, to the conventional vertical-receivers we used data from horizontal-receivers aligned with the source. Synthetic seismic data sets models suggest that it is possible to observe different seismic responses from voids and boulders. Thus, this method could increase/decrease the likelihood an observed scatter is from a void. In such a manner, these observation can be used to further develop tools for more accurate detection and discrimination of subsurface anomalies.

Introduction
This work is a continuation of a larger research project that was designed to evaluate several seismic techniques to detect, differentiate, identify, and, when possible, estimate the changes in physical characteristics or properties of materials of naturally occurring or human-made near-surface underground structures such as tunnels, mines, voids, etc.

Various seismic methods to detect voids were presented by Sloan et al. (2010) was followed by multi-method approach to detect clandestine tunnels (Sloan et al., 2015). Efforts to detect tunnel using seismic diffractions (Peterie and Miller, 2015; Peterie et al., 2016) extending the works of other researchers (Landa and Keydar, 1998; Grandjean and Leparoux, 2004; Khaidukov et al., 2004) suggested that mode converted diffractions and diffractions related to the shear-wave (S-wave) or surface waves may be generated and in some cases used for imaging (Korneev, 2009; Kaslilar et al., 2013). However, identifying voids from other subsurface objects using the seismic method typically has been a challenging problem (Ivanov et al., 2017).

One of the goals of this research effort was to evaluate the potential of using more than one seismic response events for near surface anomaly detection and possible identification.

Synthetic Seismic Models
Six synthetic seismic data sets were calculated using FFDM, a proprietary software from the Kansas Geological Survey for seismic-data modeling, specifically tuned for the estimation of surface-wave propagation (Zeng et al., 2011). Background seismic model parameters were selected using a 1-layer model (Table 1), which was 450 m wide and 45 m deep.

Table 1. The single-layer model parameters used for the calculation of synthetic seismic data.

<table>
<thead>
<tr>
<th>Layer</th>
<th>V_s (m/s)</th>
<th>V_p (m/s)</th>
<th>Dens. (g/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>1000</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Data were acquired with a roll-along style of survey with source and receivers advancing at 2 m increments. Thirty-two synthetic shot records were calculated from each model using an 80-Hz first derivative Gaussian wavelet located 30 m away from the nearest receiver.
Detecting subsurface objects and identifying voids with diffraction

![Shear-wave velocity model](image)

Figure 2. Shear-wave velocity model used for calculating synthetic seismic shot records showing the location of the void (the white square), source (cross), and receivers.

For data processing convenience, the left edge of the void was assigned to the station number 1270 (a horizontal location number) corresponding to $x = 270$ m (Figure 2). Record 5019 (Figure 1) was calculated using source and receiver locations indicated on the seismic model (Figure 2). The no-anomaly V-receiver data set was subtracted from the corresponding void-containing and boulder containing data sets to obtain clear void-only- and boulder-only-signature data sets. Another pair of void-only- and boulder-only-signature data sets were obtained using the Sv-receivers.

Some of the questions we tried to address included: can we observe both compressional-wave (p-wave) and shear-wave (s-wave) diffraction arrival patterns, how many, would they be different on the void-only and boulder-only signature records, and would there be differences when using V- or Sv-receiver data?

To address these topics we adopted the approach of plotting the diffraction arrival times from the void/boulder following four types of propagation patterns: an incident p-wave and a diffracted p-wave (p-p); an incident p-wave and a diffracted s-wave (p-s); an incident s-wave and a diffracted p-wave (s-p), and an incident s-wave and a diffracted s-wave (s-s). Additional curves, such as the ones from an incident p-wave, a p-wave multiple from the void to the surface and to the void, and a diffracted s-wave (p-p-s) were plotted when suggested by the arrival patterns.

First we examined the void-only vertical receiver data (Figure 3). It was possible to observe the p-p diffraction arrivals on all traces, the p-s and the p-p-s diffraction arrivals on most of the traces with the exception of 5-7 traces near the apex, and half of the s-p arrivals diffracting back toward the source (i.e., it was difficult to identify s-p diffraction away from the source). Some arrivals matched reasonably well with the s-s body wave diffractions but were in a very close range of a possible Rayleigh wave response, which for this type of model would have a 93.5% velocity of the shear wave. Observing their lower frequency content and larger amplitudes in comparison to the p-s and the p-p-s arrival, we considered these arrivals to be most likely from the Rayleigh wave. We examined an identical 25-Hz V-receiver void-only synthetic data set (Figure 4) obtained at previous stage of our research efforts (Ivanov et al., 2017).

![80 Hz, void-only V-receiver synthetic seismic shot gather 5019](image)

Figure 3. An 80 Hz, void-only V-receiver synthetic seismic shot gather 5019 with a void located at station 1270. Curves from top to bottom follow the diffraction arrival times of the p-p, p-s, p-p-s, s-p, and s-s body waves.

![25-Hz, void-only V-receiver synthetic seismic shot gather 5019](image)

Figure 4. A 25-Hz, void-only V-receiver synthetic seismic shot gather 5019 with a void located at station 1270. Curves from top to bottom follow the diffraction arrival times of the p-p, p-s, p-p-s, s-p, and s-s body waves.
Detecting subsurface objects and identifying voids with diffraction

Next, we examined the boulder-only vertical receiver data (Figure 5) using positive-polarity fill in the display in comparison to the negative-polarity fill of the void-only data (Figure 3). Similarly, it was possible to observe almost identical diffraction arrivals for the p-p, p-s, p-p-s, s-p, and s-s body waves travel paths. In addition, it was possible to observe ~14 traces matching the diffraction apex of a p-p-p travel path.

Third, we examined the void-only Sv-receiver data (Figure 6). It was possible to clearly observe only the p-p and s-p diffraction arrivals. Their signature was different in comparison to the V-receiver data. The p-p changed polarity at the apex and the s-p was this time was noticeable on most of the traces with the exception of 5-7 traces near the apex, which was similar to the p-s and p-p-s patterns of the V-receiver data.

The p-s and p-p-s arrival curves did not find a good match on void-only Sv-receiver data. The observed potentially s-wave diffractions exhibited apparent velocity ~20-30 % higher than the s-wave velocity of the seismic model (i.e., 500 m/s). Furthermore, it was possible to observe such arrival pairs (with higher gain) ringing ("p-ns-s" curves) down the record below 180 ms (Figure 7). As well, it was possible to observe such an apparent higher velocity for a potential s-s curve (Figure 8).

Then, we examined the boulder-only Sv-receiver data (Figure 9). Similarly to the void-only Sv-receiver data, it was
Detecting subsurface objects and identifying voids with diffraction

possible to clearly observe only the p-p and s-p diffraction arrivals using a positive-polarity amplitude fill.

Likewise, it was possible to observe s ringing ("p-n-s-s") patterns below 180 ms with a reduced clarity (Figure 10).

For these models, the main difference between the void-only and boulder only V receiver responses appeared to be the polarity reversal and the presence of a few diffraction-apex p-p-p arrivals. The main difference between the void-only and boulder only Sv receiver response appears to be the polarity reversal and the ringing patterns below 180 ms.

It was possible to observe clearly only two (p-p and s-p) diffraction patterns with the Sv receivers in comparison to at least four when using V receivers. Further research could clarify the 30 % higher apparent diffraction velocity than the model s-wave diffraction arrivals.

Conclusions

Different model- and receiver-data comparisons show that there can be potential for using multiple arrival signatures for enhanced detection and possible identification of near surface underground anomalies using the seismic method.

Acknowledgments

We appreciate Mary Brohammer for her assistance in manuscript preparation.
REFERENCES

