Evidence for a variable Archie porosity exponent “m” and impact on saturation calculations for Mesaverde tight gas sandstones: Piceance, Uinta, Green River, Wind River, and Powder River basins

Robert M Cluff, The Discovery Group Inc.
Alan P. Byrnes, Kansas Geological Survey¹
Stefani Whittaker, The Discovery Group Inc.
Dan Krygowski, The Discovery Group Inc.

AAPG Rocky Mountain Section meeting, Denver, Colorado
10 July 2008
US DOE Project Summary

- **DOE Contract # DE-FC26-05NT42660**
 - completion date 30 June 2008

- **Organizations**
 - University of Kansas Center for Research, Inc.
 - Kansas Geological Survey, Lawrence, KS
 - The Discovery Group Inc., Denver, CO

- **Principal Investigators:** Alan P. Byrnes, KGS; Bob Cluff, Discovery Group

- project website is http://www.kgs.ku.edu/mesaverde
Objectives of this task

- Characterize Mesaverde electrical properties as a function of porosity and salinity
 - Archie porosity (cementation) exponent “m”
 - Investigate behavior at low porosity end (<6%) not previously studied
 - Evaluate excess conductivity effects
- Methods to compute accurate Sw from logs
Sampling

- systematic characterization of Kmv lithofacies over entire Rocky Mtn region
- 44 wells/6 basins
- Described ~7000 ft core (digital)
- 2200 core samples
- 120-400 advanced properties samples
Permeability vs Porosity

- Samples collected over a wide range of porosity and permeability across 6 basins
- 0-24% porosity, spanning 1 nD to >100 mD
Archie’s equation

\[S_w^n = \left(\frac{a}{\phi^m} \right) \times \left(\frac{R_w}{R_t} \right) \]

- completely empirical – no theoretical basis
- “m” is the porosity or cementation exponent
 - loosely related to tortuosity of the current flow path, better thought of as electrical efficiency of the path
- “n” is the saturation exponent
 - related to change in conductivity path with changing saturation
Archie porosity exponent

- for a simple bundle of capillary tubes oriented parallel to current flow direction: $m \to 1$
 - insensitive to cross section shape, so fractures act like capillary tubes
- as porosity increases and less of it participates in the conductive path, $m \uparrow$
- for an “average” sandstone comprised of spherical grains, $m \to 2$
Resistivity of a simple rock model

For rock with tortuous pores:

\[F = \frac{R_o}{R_w} = \frac{1}{\phi^m} \]

(after Doveton, 2005)
Capillary tube model for m

Conductivity = \(C_w \)

\(m = 1 \)

Conductivity = \(C_w\phi \)

\(m > 1 \), ~2, > 2

Porosity

after Herrick & Kennedy, 1993, SPWLA Paper HH
Core measurement of the formation factor, F

Start with core plug saturated with brine of known R_w & Φ

then we measure R_0. $F = R_0/R_w$.

A R_w

Φ L
When F and ϕ are plotted log-log

\[\log F = -m \log \phi \]
Observed porosity dependence of “m”

- Empirical: \(m = 0.676 \log \phi + 1.22 \) \(R^2 = 0.63 \) (RMA)
- each salinity is different
 - 40Kppm dataset is largest and used for base case
 - cap m at 1.95

\[y = 0.5377x + 1.3313 \]
\[R^2 = 0.6331 \]
Dual porosity model

- \(m = \log[(\phi - \phi_2)^{m_1} + \phi_2^{m_2}]/\log \phi \)
 - \(\phi \) expressed as V/V
 - \(\phi_2 = 0.0035, m_1 = 2, m_2 = 1; \ SE \ both = 0.11 \)
 - rock behaves like a mixture of matrix porosity and cracks, with cracks dominating low porosity end
- cap at \(m = 1.95 \) (\(\phi \sim 16\% \))
- both models fit data

\(\phi = \) bulk porosity
\(\phi_2 = \) fracture porosity
\(m_1 = \) matrix cementation exponent
\(m_2 = \) fracture cementation exponent

![40K ppm brine data](image)
And a third way to look at it....

- Why is the minimum $m \sim 1.2$, instead of 1?
- A – for a distribution of cracks of different cross-sectional area, the largest (widest) cracks will dominate the conductivity.
- The high tail of the distribution determines the bulk conductivity,
- while the rest of the cracks act like “excess” porosity that do not participate (significantly) in the conductivity.
- Therefore $m \uparrow$
And are the “cracks” all fractures?

- Probably not..............
- Slot-like pores oriented preferentially parallel to bedding also act like conductive cracks
- Thin parallel laminae of slightly coarser, more permeable sand will be crack-like
Salinity dependence of “m”

- Tested plugs with 20K, 40K, 80K, and 200K ppm brines
- Nearly all cores exhibit some salinity dependence

\[n = 335 \]
All data, all salinities

In situ Porosity (%) vs. Archie Cementation Exponent (m, a=1)
Salinity dependence of “m”

- $m = a \log \phi + b$
- Intercept b drops with decreasing salinity
- Slope is ~ constant

![Graphs showing the relationship between salinity and porosity for different salinity levels (20K ppm, 40K ppm, 80K ppm, 200K ppm).](image)
Simple procedure to compute Sw

- determine Rw @ Tf conventionally
 - Pickett plots – focus on the lower porosity, wetter sandstones
 - produced waters
 - your best guess

- convert Rw to 75°F by chart lookup or Arps equation
Pickett Plot example

Rw = 0.306

pick m at low porosity end, where BVW_{irr} \sim BVW

Williams PA 424-34
Piceance basin
Kmv above “top gas”
Pickett plot

\[R_w \text{ ohmm } @ 160^\circ F = 0.7 @ 75^\circ F \text{ (9K ppm)} \]
Our new procedure

- compute m at 40K ppm from RMA regression:
 \[m_{40k} = 0.676 \log \phi + 1.22 \]
 e.g. for 10% \(\phi \): \(m = 0.676 + 1.22 = 1.896 \)
- correct m for salinity effect by
 \[m = m_{40k} + (0.0118 \phi - 0.355) \cdot (\log R_w + 0.758) \]
 e.g. for 10% \(\phi \), \(R_w = 0.7 @ 75^\circ F \)
 \[m = 1.896 + (-0.237 \cdot 0.603) = 1.753 \]
- cap m at 1.95 (~12% porosity)
Practical impact

- Nominally, most of us use an \(m \) close to 2, but usually slightly less, for tight gas sand evaluations (e.g. 1.85, 1.90)
- Variable \(m \) that DECREASES with decreasing porosity leads to lower \(S_w \)’s
- Therefore, there is more gas in the tight rocks than we thought.
- Above 10% porosity there is very little difference
Example: Low porosity, wet zone
“High” porosity gas zone

m is HIGHER than base case, so Sw is higher
30K ppm example, Wamsutter
Summary & Conclusions

- 335 Kmv samples run at multiple salinities
- Archie porosity exponent m varies with
 - porosity: $m \downarrow$ as porosity \downarrow
 - salinity: $m \downarrow$ as salinity \downarrow
- Behavior is consistent with increasing electrical efficiency with decreasing porosity, whatever the pore scale architecture
variable m model can be implemented with a simple equation relating m to porosity and formation water salinity

- m is constant above ~12% porosity at 1.95
- lowering m at 5-12% ϕ increases GIP
- see no impact below ~5% porosity
 - BVW_{irr} is typically 3-5%
 - no longer calculate Sw's $>> 1$
 - $Sw = 1$ at low ϕ validates Rw
Visit our project website

http://www.kgs.ku.edu/mesaverde

Questions?

The Discovery Group, Inc.