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L. Introduction

In this report, the mathematical derivation of the solution of Butler et al. (in
review) for drawdown and stream depletion produced by pumping from a fully
penetrating well in the vicinity of a finite-width stream of shallow penetration is
presented. For the sake of generality, the solution is obtained in a dimensionless form.
See Butler et al. (in review) for notation definitions that are not given in this report.

II. Drawdown Solution

The drawdown solution was obtained using a straightforward extension of the
approach described in Butler and Liu (1991). Equations (1)-(10) of Butler et al. (in
review) describe the flow conditions of interest here. Dimensionless forms of these
equations are as follows:
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where
®; (dimensionless drawdown) =s;T3/Q, i=1,3;
_ (dimensionless time)=(Tst)/(w”S3);
_=x/w; n=y/w; _=a/w; B=b/w;
_ (stream leakance) = (K’w?)/(b’T>);
XRB:Xrb/W; XLB:XH)/W; yi:TH—l/Ti, i:1,2;
l.li:Si/Ti, i=1,3; P= l.li/l.l3, i=1,2.

A solution can be obtained for equations (1)-(10) through use of integral
transforms (Robinson, 1968; Churchill, 1972). A Laplace transform in time followed by
a Fourier exponential transform in the n direction produces Fourier-Laplace space

analogues to (1)-(3) of the following form:
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®, =the Fourier-Laplace transform of ®;, i=1,3;
p=Laplace transform variable;

w=Fourier transform variable;

)\1 = ((,02+P1p)0'5;

)\2 = ((,02+B+P2p)0'5;

As = ((,02+p)°'5.

The Fourier-Laplace space solutions to (11) and (12) are quite straightforward:
D, =Ce™ +Ce’* (14)

2=C3e'* +C,e"? (15)

The Fourier-Laplace space solution to (13) cannot be found as easily owing to the non-
homogeneous delta function term in that expression. The approach used for obtaining a
solution to (13) was to divide zone 3 into two subregions, subregion 31 (0<{<a) and
subregion 32 (0<¢<Xgp). The solution for subregion 31 consists of a homogeneous part

and a particular solution (53p ):

D, = Cse’t + Coe ™ +§3p (16)

Using Theorem 3.13 of Boyce and DiPrima (1986), the particular solution can be written
as:
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The solution for subregion 32 consists solely of a homogeneous part:



Dy, = Cett + Cpe™* (18)

The division of region 3 into two subregions requires two additional boundary conditions
to ensure continuity across the division:

D, (a,w, p) = Dy, (a,w, p) (19)
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The constants in equations (14)-(16) and (18) can be evaluated by substituting these
expressions into (19)-(20) and the following Fourier-Laplace space analogues of (5) and

(7)-(10):
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Evaluation of the constants is a straightforward but tedious algebraic exercise. Once the
constants are found, they are substituted back into equations (14)-(16) and (18) to obtain

the following expressions:
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Equations (26)-(29) form the Fourier-Laplace space solutions to (1)-(10). Substitution of
(26)-(29) into the transform-space analogues of (1)-(10) will demonstrate the viability of
the proposed solutions.



The Fourier-Laplace space solution must be transformed back to real space for
practical applications. Butler et al. (in review) discuss the numerical inversion schemes
used in this work and compare the numerically inverted solution, which is computed
using Butler and Tsou (1999), with existing analytical and numerical models.

III. Stream Depletion Solution

The solution for stream depletion was obtained following the approach outlined
by Hunt (1999). Butler et al. (in review) define stream depletion in equation (11), the
dimensionless form of which is:
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Application of the Laplace transform to equation (30) and switching the  and n integrals
results in:
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where
AQ (p) =Laplace transform of AQ.

The term in parentheses is simply the Fourier-Laplace transform of ®, for w=0:
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Substitution of equation (27) into (32) and performing the integration results in:

AO(p) = i}(m[(mxl-e-ﬂ )-(B1)(1-¢2)] (33)
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where
/\*2 :( B‘f‘Pzp)O'S.

Equation (33) is the Laplace-space solution for stream depletion. Butler et al. (in review)
describe the numerical scheme used to invert equation (33) to real space, and compare the
resulting solution to existing analytical and numerical models. As with the drawdown
solution, the numerical inversion scheme is implemented in Butler and Tsou (1999).
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