Distribution of petrophysical properties in a lower Morrow sandstone (Keyes), southwest Kansas

by Richard H. Franz, Chevron U.S.A. Inc., Denver, Colorado

Summary
Core 5 lower A (Anadarko Production Co., Kansas Geological Survey) sampled the Keyes sandstone from the lower Morrow from Morton County (sec. 8, T33 S., R40 W.), Kansas (fig. 1, core location 4). The well has produced a small amount of oil and is in the Cimarron Valley field where the Morrow produces both oil and gas.
Core 5 low A was incorporated in an M.S. thesis project largely funded by the Tertiary Oil Recovery Project (TORP) at the University of Kansas (Franz, 1984). The core was studied as part of an attempt to relate geological aspects and petrophysical properties of selected Morrowan rocks in southwestern Kansas. The study focused on petrographic and petrophysical properties and their interrelationships, for given general lithofacies types.

Glaucosmic, crossbedded sandstone constitutes the major reservoir facies in this core. The lithofacies is significant because it exhibits a range in permeability (0.1-178.4 md.), porosity (7.9-16.8%), and effective pore radii (2-17 microns). Sedimentologic and diagenetic factors are important as controls of petrophysical properties. The vertical distribution of permeability implies preferential fluid flow through the upper portion of the sand body. However, the chlorite and ferroan dolomite-ankerite cements may react with injected fluids. Knowledge of this type is important in development of a field, for example, in the design of an enhanced-recovery project.

Stratigraphy
The type log (fig. 2) is a generally applicable subdivision of the Lower Pennsylvanian in the Anadarko Basin and the Hugoton Embayment. In western Kansas, rocks of Morrowan age have been defined as the Kearny Formation (fig. 3; Zeller, 1968; McManus, 1959). The Kearny Formation consists of those rocks present between the generally oolitic limestone of Mississippian age and the overlying dark limestones and shales of the Atoka. The upper contact of the Morrow with the Atoka is usually easily picked out on logs because of the distinctive Atokan "Thirteen Finger Limestone." The Kearny occurs within a depth interval of 1,300-1,900 m and ranges up to 185 m in thickness. The formation thickens and occurs deeper southward across Kansas into the Anadarko Basin (Watson, 1979).

The subdivision of the Kearny (Morrow) into lower and upper sections generally separates marine deposits of the lower Kearny from younger nonmarine deposits. The lower Kearny consists of black shales and discontinuous, glauconitic limestones, sandstones, and fossiliferous sandstones. The upper Kearny is characterized mostly by black shales, carbonate-rich shales, and discontinuous, coarse-grained, arkosic sandstones. The Keyes sandstone, at the base of the lower Morrow, is a discontinuous band of glauconitic sandstones and sandy lime packstones.

FIGURE 1—Location of cores used in this study.
Core 5 Low A was taken from a depth interval of about 1,740.7–1,753.6 m (5,695–5,657 ft; 5,624–5,666 ft by log) in Morton County (sec. 8, T. 33 S., R. 40 W.), Kansas (fig. 1, core location 4). The Kearny (Morrow) section and cored interval are indicated on the log for well 5 Low A shown in fig. 4. The cored interval corresponds most closely to the basal, marine Keys sandstone of the lower Morrow (fig. 2).

Structural and depositional setting

Major tectonic elements of the Midcontinent during the Pennsylvanian are shown in fig. 3. Deposition of lower Morrow sediments took place during a general transgression from the Anadarko Basin into the Hugoton embayment. This transgression was marked by a number of shoreline stands during which depositional environments included nearshore beach and barrier bar and shallow marine shelf (Busch, 1961; Khawka, 1968).

Extensive southeastward deltaic progradation characterized the paleogeography of southwestern Kansas during deposition of upper Morrow sediments (Swanson, 1979; Adler and Rascoue, 1983). Marginal marine and deltaic environments prevailed at this time. Sand, typically coarse-grained, commonly was deposited in point bar sequences and distributary channel banks and as distributary mouth bars (Swanson, 1979).

Petroleum geology

Sandstones and congleratic sandstones of the upper Morrow are most important as reservoirs in the Anadarko Basin and Hugoton embayment (Swanson, 1979). Most production has been wet gas with a gas-oil ratio of 38–42 AFI oil exists throughout the area (Swanson, 1979; Paul and Bahnasai, 1981).

The Keys sandstone interval in Core 5 Low A is productive in the Cimarron Valley field, located in Morton County, Kansas. Oil and gas production in this field comes from the St. Louis Limestone (Mississippian), the Morrow, and the Counselor (Grove Group) Formation (Pemex-Wolfgang). Gas production has been much more significant than oil production, totaling 626,983 MCF. Cumulative oil production is 184,428 bbls through 1982. In 1982, 54,453 MCF of gas and 41 bbls of oil were produced. Well 5 Low A (Low 5A) has produced 1,072 bbls of oil. Sample production figures from other Keys wells in this field include: 90 BOPD with 40% water (Low 3A), 70 BOPD with 20 FW (Low D3), 4,236 MCFPD (Low C4), and 9,908 MCFPD (Goldmed A-1; Paul and Beene, 1983; W. T., Wanyan, personal communication, 1983).

Core description and interpretation

Two important lithofacies occur in Core 5 Low A: glauconitic, crossbedded sandstone and muddy, poorly sorted, glauconitic, bioturbated sandstone (figs. 5, 6, and 7). The former is more abundant and is the reservoir facies. It is generally medium- to coarse-grained and moderately well sorted (fig. 8). A coarser variation may contains shale clasts up to 1 cm long is present. Towards the top of the major interval of this lithofacies, grain size ranges down to fine grained, and sorting improves (well to very well sorted; fig. 9). The predominant sedimentary structure is relatively high-angle crossbedding. Thin laminae of black clay are abundant except in part of the upper half (3.5 m) of the core.

FIGURE 2: Typical electric log of Morrowan Stage and adjacent rocks in the Anadarko Basin (after Arro, 1965).
The vertical sequence present in Core 5 Low A is basal greenish limestone and shale (0.6 m); muddy, poorly sorted, bioturbated sandstone (0.5 m); crossbedded sandstone (1.6 m); bioturbated sandstone (1.9 m); then a thick (7.9 m) interval of crossbedded sandstone (fig. 7). Contacts between facies are fairly sharp. Overlying the cored interval is about 50 ft of shale. The greenish limestone and shale sequence is most likely Mississippian. The nature of the Mississippi-Pennsylvanian contact is unknown due to poor core recovery; however, the contact generally is believed to be a regional angular unconformity. The vertical sequence in this cored interval seems to represent an overall regressive transgression from a lower energy (possibly interbar or bar flank) area on a shallow marine shelf to a higher energy area represented by the crossbedded sandstone lithofacies. The thick interval of crossbedded sandstone lithofacies becomes cleaner (fewer shale laminae and clasts) and better sorted in its upper half, suggesting more agitated energy conditions. The shoaling-upward sequence and the abundance of glauconite suggest the crossbedded sandstone of Core 5 Low A was deposited as an offshore bar (Finst, 1984). Offshore bar typically show characteristics reflecting an increase in energy conditions upwards, although this is usually seen as an upward increase in grain size (Bremer and Davies, 1974; Sparrington, 1975).

Petrography and diagenesis

The main lithofacies of Core 5 Low A, crossbedded sandstone, is assigned a general petrographic classification (Folk, 1980) as follows: moderately well to very well sorted medium to coarse sandstone, dolomite, and quartz-cemented submature to mature glauconitic subarkose. Detrital constituents include an average of about 7% feldspar, 3-25% glauconite, and less than 1% skeletal carbonate grains. Shale clasts average on the order of 3% and range up to nearly 12%. They are more abundant in the lower portions of lithofacies.

Diagenesis of the crossbedded sandstone lithofacies has led to formation of authigenic materials (chlorite, quartz, ferrugin dolomite-ankerite) and to compaction. Chlorite grain-coatings and quartz overgrowths are best developed in the upper half of the core (figs. 10 and 11). Late-stage ferrugin dolomite-ankerite occurs largely as a replacement of detrital clays (laminae and clasts), but also as a pore-filling cement (fig. 12). This authigenic mineral is most notable in the lower "shaly" portion of the core. Compactional features (stylolites) associated with clay laminae also seem more significant in the lower portions of the core (fig. 13).

Petrophysical properties

Porosity, permeability, and effective pore-throat size in the crossbedded sandstone lithofacies range from 7.9 to 16.8%, 0.1 to 176.4 md, and from about 2 to 17 microns (figs. 14, 15, and 16), respectively. Porosity and permeability were determined by brine saturation and with a Radio liquid permeameter. Pore-size distribution curves (figs. 14, 15, and 16) were derived from data obtained by
Thirteen Finger limestone (Atokan)

Upper Morrow

Lower Morrow

Keyes Sandstone
cored interval

Mississippian

FIGURE 4 - Gamma-ray exercise log for well Amanda 4A-6, Cenomanian, Keyes Field, Morton County, Kansas.
FIGURE 5—Glauconitic, crossbedded sandstone. Upper portion at 5618 ft (left), lower at 5631 ft (right). Note: characteristic black clay film; true scale = 10 cm.

FIGURE 6.—Moldy, poorly sorted, glauconitic, humaitated sandstone clasts. From lower part of core at 5645 ft, scale = 10 cm.

mercury injection tests performed by Core Labs, Inc. (Pattison, 1979).

The vertical distribution of these properties, particularly permeability (fig. 7), is important to note. The upper half of the major portion of crossbedded sandstone has the higher values of permeability, porosity, and pore-throat size. The locations of the samples for which a pore-size distribution curve is presented are indicated in fig. 7 by asterisks.

FIGURE 7—Core of well Low A #5 showing vertical distribution of permeability and porosity as well as rock type.

Relationships between sedimentology, diageneis, and petrophysical properties

Higher permeability values in the upper half of the main interval of crossbedded sandstone can be associated with higher porosity and larger pores (figs. 7 and 14). Depositional and diageneric factors are believed to be important controls of vertical distribution of petrophysical properties. The upper part of the core tends to be somewhat better sorted and cleaner (less clay and fewer laminae and clasts) than the rest of the core interval (figs. 8 and 9). Sorting is an important control of initial porosity and permeability; in general, better sorting favors higher porosity and permeability (Pattison and others, 1973, p. 525). A higher percentage of clays (including detrital shale clays) would tend to promote compaction. Breaks reducing pore-throat size, porosity, and permeability. Crossbedding features are more obvious in the lower part of the sequence, including the lower half of the main crossbedded sandstone.
interval (fig. 13). Estimates of porosity reduction by compaction were made using the equation: porosity loss by compaction = porosity-initial (assumed) - [porosity-present (measured) + porosity cement (measured)] (Tomas and McBride, 1977, p. 42). Compaction is somewhat greater in the lower part of the crossbedded lithofacies; sample SLA5619.5-8.7% porosity reduction by compaction, SLA5635.3-12.3%.

Pore type and authigenic mineralogy also are probably important controlling factors of permeability. A high percentage of intergranular pores favors high permeability in contrast to a high percentage of micropores (digs to pore-throat size less than 0.5 microns), which is associated with low permeability (Pitman, 1979). Point counts of pore types reveal that sample SLA5619.5 (K = 176.4 md) has 71.1% intergranular pores and 6.0% micropores (22.9% secondary), as compared to sample SLA5635.3 (K = 2.4 md), which has 48.6% intergranular and 40.6% micropores (10.8% secondary, fig. 17). In addition, ferroan dolomite ankeritic in a replacement of cement may reduce permeability in the lower part of the core. The well-developed quartz overgrowth cement in the upper portion of the core, if forming early, could have prevented or reduced compaction.

FIGURE 8—General textural character of crossbedded calcite dolomitic limestone—medium to coarse grained, moderately well sorted. Note ferroan dolomite ankeritic (arrow). Depth—5635 ft; bar = 0.7 mm XN.

FIGURE 9—Upper portion of crossbedded lithofacies fine to medium grained, very well sorted. Depth—5619 ft; bar = 0.7 mm XN.

FIGURE 10—SEM photomicrograph of authigenic dolomite grain coating overgrowth by quartz. Characteristic algal features of the upper part of the crossbedded lithofacies. Depth—5610 ft; white bars = 10 microns.

FIGURE 11—Quartz overgrowth cementation characteristic of upper part of crossbedded lithofacies (arrows). Depth—5619 ft; bar = 0.2 mm XN.
Implications for enhanced oil recovery (EOR)

Zonation of permeability, exhibited by the main reservoir lithofacies in this lower Morrow Keys interval, suggests that preferential fluid flow would occur through the upper part of the sand body. This information will be important to those who may attempt development of a Keys field. For example, a reservoir engineer attempting to model the sweep of injected EOR fluids through the reservoir would need to know about permeability distribution.

With respect to enhanced recovery efforts, considering the pore-lining minerals that will be contacted by EOR fluids also is necessary. In the case of Core 5 Low A, the upper, more permeable zone contains authigenic pore-lining chlorite (fig. 10). Chlorite is among the minerals that are sources of ferrous ions, which are detrimental to poly-
Conclusions

The Keyes Sandstone interval represented in Core 5 Low A exhibits a verticalzonation in petrophysical properties that can be related to depositional and diagenetic factors. Depositional environment (shallow marine shelf-offshore bar) influenced sorting and composition (clay content). The better-sorted, cleaner, upper part of the sequence exhibits the higher values of pore-throat size, porosity, and permeability. The higher clay content of much of the lower sequence resulted in a greater degree of compaction and a higher percentage of micropores (as opposed to intergranular and also secondary pores). The poorer sorting and greater degree of compaction and greater fraction of micropores resulted in lower values of pore-throat size, porosity, and permeability.

The zonation of petrophysical properties (particularly permeability) and the authigenic mineralogy present pose important considerations with regard to EOR efforts. Specifically of concern are: 1) the implication of a zone of preferential fluid flow, and 2) the potentially destructive effects of iron.

Acknowledgments—Core 5 Low A is in the collection of the Kansas Geological Survey in Lawrence, This research was supported by the Tertiary Oil Recovery Project of the University of Kansas and the Kansas Geological Survey (Francz, 1984).

References

