
CHAPTER 6.  STATIC RESERVOIR MODEL 
Martin K. Dubois, Geoffrey C. Bohling, and Alan P. Byrnes 
 
For detailed documentation on the construction of the static model see digital appendix: 
Geomod4_build 
 
INTRODUCTION 
 
Building an accurate static model for the entire Hugoton field (Hugoton and Panoma in 
Kansas and Guymon-Hugoton in Oklahoma) was the primary objective in the Hugoton 
Asset Management Project (HAMP). The goal was to develop a model with sufficient 
detail to represent vertical and lateral heterogeneity at the well, multi-well, and field 
scale, which could be used as a tool for reservoir management.  This required that the 
model be finely layered (169 layers, 3-ft (1 m) average thickness), and have relatively 
small XY cell dimensions (660x660 ft, 200x200m; 64 cells per mi2). These criteria 
resulted in development of a 108-million cell model for the 10,000-mi2 (26,000-km2) area 
modeled.  Although lithofacies geo-bodies tend to be laterally extensive, covering multi-
section to township scales, small XY-cell dimensions were required to allow the 
extraction of portions of the model for local reservoir simulation.  The Hugoton 
geomodel may be the largest model of its kind (lithofacies-controlled, property-based 
water saturations), and the workflow illustrates how very large models can be built. 
 
The simplified workflow presented in Figure 6.1 might be interpreted to indicate that the 
workflow process was linear; however, it is important to note there are multiple feedback 
loops at varying scales (with each step, between adjacent steps, and involving multiple 
steps).  In addition, there were multiple iterations in the workflow at scales from 
individual steps to the model scale.  At the model scale, there were four major iterations, 
Geomod1 through Geomod4.  Geomod1, prior to HAMP, was a model for the Council 
Grove in Kansas where the basic workflow strategy was developed (lithofacies defined in 
core, lithofacies predicted in non-cored wells with neural networks trained on core, core 
and wire-line log petrophysical properties tied to lithofacies, and property-based water 
saturations), and automated processing tools were prototyped (Dubois et. al., 2003).  
Geomod2 covered a relatively small area around the Alexander D simulation area (see 
Chapter 9) and was the first model that included the Chase.  It used neural networks to 
predict lithofacies from wireline-log response and petrophysical transforms from Council 
Grove to predict properties in the Chase.  After Chase core lithofacies and petrophysical 
data were added to the dataset, the next generation of models were developed 
(Geomod3), first for two 70-mi2 models in the Flower (Stevens County) and Graskell 
(Grant-Haskell County line) areas (see Chapter 9) and then for the full field.  Geomod3 
was the basis for the paper presented at the 2006 American Association of Petroleum 
Geologists core workshop on modeling giant reservoir systems and for Dubois et al. (in 
press).  Geomod4, the latest model, included more core (doubled from 14 to 28 wells) 
and more model “node” wells (1364 to1600 wells) than did Geomod3, but the resulting 
models were remarkably similar. 
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Each iteration of the model included successive generations of neural network training, 
refinement of core petrophysical property algorithms, wire-line log property corrections, 
and improvements to the automation process.  It is noteworthy that successful 
deployment of the multi-iteration strategy was possible only through very close and 
ongoing integration of work by six scientists (from multiple disciplines) at the Kansas 
Geological Survey and three consultants over a 2-1/2 year period. Concurrent with model 
building, numerical simulations of dynamic models of portions of the larger geomodel 
were conducted to validate the static model process (Chapter 9).  History-matched 
simulations served to ground truth the model at the well to multi-well scale, which was 
critical to building confidence in the modeling process and the static model as an accurate 
model of lithofacies, petrophysical properties, water saturation, and gas in place.  
Although the multiple-iteration-model strategy might seem inefficient compared to a 
more linear approach (gather all data, analyze all data, model all data), this approach 
proved very effective for many reasons: 1) enabled adjustment in the approach after 
discovery of new knowledge (e.g., Chase and Council Grove behave as a common 
reservoir rather than as separate reservoir systems), 2) allowed critical tactical decisions 
to be made early in the process (e.g., lithofacies class boundaries and number of 
lithofacies), 3) facilitated participation and technical review by industry partners, and 4) 
enabled early results to be disseminated to industry partners for their immediate use.   
 
 
Static Model Accuracy 
 
The accuracy and utility of the Hugoton geomodel can be measured by several metrics 
including prediction accuracy of parameters like lithofacies, petrophysical properties, and 
OGIP at the well- to field-scale. The only direct measure for lithofacies is the comparison 
of predicted- and core-defined lithofacies. We can also qualitatively measure the validity 
of the lithofacies model by 1) comparing it with earlier work at smaller scales, and 2) 
comparing the three-dimensional lithofacies patterns with depositional models that have 
been proposed for the area and for upper Paleozoic cyclic depositional systems in 
general. Measures of accuracy for any parameter at the lease and field scale are 
constrained by lack of data measured at this scale and the need to compare parameters, 
such as OGIP.  However, OGIP estimation requires integration of many parameters, the 
product of which may be inaccurate due to error in a single parameter or improper 
integration of accurate parameters due to improper scaling of properties or the input of a 
property that was not modeled.  Ultimately, measures of accuracy and utility of a 
geomodel at the lease and field scales are often defined by comparison of predicted and 
measured production and pressure history, where the predicted pressure and production 
data are obtained from input of the static geomodel (the focus of this paper) into a 
reservoir flow simulator to obtain a dynamic model. The workflow involved in 
calibration of the geomodel with dynamic data is not shown in Figure 6.1 but was an 
important part of testing and refining the geomodel. Dynamic modeling has been 
performed on one 9-square-mile and two 12-square-mile areas (23 and 31 km2), including 
histories for 28, 39, and 15 wells, respectively, to test and refine the geomodel discussed 
here (see Chapter 9). These simulations generally validate the present geomodel but show 
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how uncertainty in some properties (e.g., free-water level) must be reduced to optimize 
the model accuracy for use in predicting field performance. 
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6.1 WORKFLOW 
Martin K. Dubois and Alan P. Byrnes 
 
The general workflow for developing the Hugoton geomodel shown in Figure 6.1 can be 
characterized as comprising four principal steps: 1) Compile data for stratigraphy 
(formation tops) and core lithologic properties, petrophysical properties, wireline logs, 
fluid properties, and production and analyze data to certify that the data meet quality and 
accuracy criteria; 2) Define properties/develop algorithms comprising training a neural 
network and predicting lithofacies at node wells and developing wireline-log analysis 
algorithms (including corrections) and petrophysical properties algorithms (e.g., 
permeability-porosity (k-φ), capillary pressure (Pc), relative permeability(kr) ), 3) 
Develop databases of properties for use in geomodel construction including lithofacies, 
porosity, tops, free-water level at node wells, and 4) Develop geomodel by constructing 
3-D cellular model using tops database, populating node-well cells with lithofacies and 
porosity database properties, upscaling properties as appropriate and populating 3-D 
model with basic properties, then utilizing petrophysical algorithms, populate 3-D 
cellular model with lithofacies-specific petrophysical properties and fluid saturations.  
 
Several of the components of steps 1 through 3 of the workflow have been described in 
detail in previous chapters. Compiling and defining lithofacies in core involved detailed 
analysis at the ½-ft (0.15 m) scale of 6756 ft (2060 m) of core from 28 wells (Chapter 4, 
section 4.1).  Compiling core petrophysical data and developing algorithms for predicting 
permeability, relative permeability, and water saturation was discussed in Chapter 4, 
section 4.2. For water saturations to be estimated through capillary-pressure relationships, 
a free-water level (FWL) must be accurately defined.  Chapter 7, section 7.2 discusses 
how the FWL was estimated for the entire field by using a combination of three 
indicators:  (1) base of lowest perforations; (2) position where log calculated water 
saturation equals 100% in field pay zones; and (3) calculation of the FWL for an 
estimated original gas in place (OGIP).   
 
The Hugoton static geomodel was constructed using PetrelTM, Schlumberger’s reservoir 
modeling software. For this software and the geomodel constructed basic input data 
comprise: lithofacies and porosity at half-ft (0.15 m) intervals, well header information to 
relate porosity and lithofacies to XYZ space, formation-member level tops set, and grids 
representing seven structural framework horizons and the free-water level.  Water 
saturation and permeability in the XY and Z directions are calculated at the cell level 
using the lithofacies-specific algorithms developed.  Modeling in PetrelTM was 
accomplished with minimal problems due to extremely meticulous quality control in 
other applications, primarily in the geologic mapping application Geoplus PetraTM. 
Significantly more time was spent in data compilation and algorithm development than in 
constructing the geomodel. The following sections discuss important aspects of the 
workflow that are not been covered in other chapters. Specific elements of the static 
model that are the focus of this discussion are the construction of the 3-D grid structure, 
lithofacies model, porosity model, and calculations within PetrelTM for creation of the 
petrophysical model. These are highlighted in the workflow in yellow (Figure 6.1) 
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6.2 3-D STRUCTURAL/STRATIGRAPHIC GRID MODEL 
Martin K. Dubois 
 
Static Model Input Data 
 

Formation/Member tops set and structural framework 
 
The primary source for structural tops in Kansas was the Kansas Geological Survey 
database (http://www.kgs.ku.edu/PRS/petroDB.html).  Tops used were those picked from 
wire-line logs at the formation or member level (1/2-cycle) by geologists in a five-year 
industry-supported Hugoton Project (http://www.kgs.ku.edu/Hugoton/index.html) that 
ended in 2003, plus those added by those involved in this study. Tops for Texas County, 
Oklahoma, were gathered in this study by correlating well logs with the Kansas intervals. 
Twenty-five tops in all were used in the model (Figure 6.2 and Table 6.1). The set of tops 
was scrutinized for error by building a series of structure and isopach maps (each 
formation or member) and visually inspecting them for anomalies. Flagged points were 
either corrected or eliminated from the dataset.  Seven of the 25 tops (Table 6.1) from 
over 8850 wells (Figure 6.3) were used to build structural framework grids that form the 
top and base horizons for six separate models.  High well density provides very good 
structural control for the geomodel.  The framework horizons were built in Geoplus 
PetraTM, and imported into PetrelTM because we found that contouring algorithms were 
more satisfactory in Geoplus PetraTM. The full compliment of 25 formation or member 
tops from 1600 “node” wells, wells with lithofacies and porosity, were used to build 
zones within the structural framework in the PetrelTM models. 
 

Digital well logs 
 
Digital well logs were critical to the project for lithofacies prediction and porosity and 
were made available for more than 5000 wells through contributions by industry 
participants in the project.  These were combined with those from the Kansas Geological 
Survey database (approximately 1000 wells).  In this pool of log data, 1600 had the 
required curves required by the neural-network models (gamma ray (GR), density and 
neutron porosity (Dphi and Nphi, and deep resistivity (ILD)) and also passed a screening 
process that eliminated irregular data.  Approximately 1000 of the 1600 well log suites 
included a photoelectric curve (PE).  We chose not to normalize or correct curves that 
were out of normal range, but instead eliminated inappropriate well logs in a rigorous 
screening process in, Geoplus PetraTM.  Screening was accomplished through the 
generation and mapping of selected statistics (mean, range, minimum, maximum) over 
specific stratigraphic intervals for each curve and eliminating outliers through visual 
inspection.  
 
 

Assemble data files for PetrelTM

 
Once all input data in the tops, lithofacies, and porosity databases were checked for 
quality assurance, geomodel input files were prepared (Table 6.2). Required input files 
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include lithofacies and porosity at half-ft (0.15 m) intervals, well-header information to 
relate porosity and lithofacies to XYZ space, formation-member level tops set, and grids 
representing seven structural framework horizons and the free water level. 
 
 
Static Model Construction 
 
The extremely large area (10,108 sq mi), small XY cells (660 x 660 ft) and relatively thin 
layers (169 layers, 3.3 ft-thick average) resulted in a 110 million-cell model that required 
subdividing the model into parts due to computational limitations.  Because the main pay 
intervals are separated stratigraphically by intervals with relatively poor reservoir 
properties and lithofacies and property modeling is restricted by zones in the modeling 
process, we chose to subdivide the Chase and Council Grove model stratigraphically 
rather than geographically, with three multi-zone, multi-formation models in the Chase 
and three in the Council Grove (Figure 6.2).  Each of the six models was built with the 
same starting architecture and layering to facilitate cutting out selected portions of the six 
models and assembly into smaller models.  These have a complete vertical section of the 
reservoir system but are limited in aereal extent and can be more easily managed for 
further analysis and reservoir simulation.  The structural framework for the six models 
was based on a structural tops database for 8850 wells (Figure 6.3). Our dataset of tops in 
Oklahoma is less complete than it is in Kansas. Layering within the models used the 
following hierarchy: 1) division between formation/members, 2) further subdivision 
between continental and marine intervals, 3) further subdivision into 169 layers based on 
minimum vertical thickness of the key lithofacies in the node wells. Layers averaged 2-ft 
thick in the marine intervals and 4-ft thick in the continental intervals.  The following 
sections discuss the population of the 3-D model with lithofacies and with petrophysical 
properties. 
 
 
6.3 LITHOFACIES ESTIMATION AT WELL TO MODEL SCALE 
 Geoffery C. Bohling and Martin K. Dubois 
 
Lithofacies Prediction at Node Wells 
 
Classification of lithofacies and their accurate representation in a 3D cellular geologic 
model is critical to the project because permeability and fluid saturations for a given 
porosity and height above free water vary considerably among lithofacies (Dubois et al., 
2003). The best source of lithofacies information is core samples of reservoir rock from 
wells; however, cores are not commonly taken due to the expense.  Because the 
availability of core is limited compared to the number of wells in the field, a method for 
estimating lithofacies in wells without cores is necessary.  In this case, lithofacies from 
cores are extrapolated from wells with cores (training wells) to wells without core (model 
node wells) through the comparison of physical rock properties measured by wire-line 
logs in both the cored wells and wells without cores. 
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Neural network training 
 
To predict lithofacies using neural-network analysis, we used a standard single-hidden-
layer neural network (Hastie et al., 2001) based on wire-line well logs in 1600 node wells 
throughout the Hugoton and Panoma fields.  As illustrated in Figure 6.4, the input vector 
to the neural network included two computed geologic variables, a depositional 
environment indicator (MnM) and a stratigraphic cycle relative position (RelPos), in 
addition to the following wire-line log parameters: gamma ray, logarithm of deep 
induction resistivity, average of neutron and density porosity, neutron-density porosity 
difference, and photoelectric factor (PE, where available).  No adjustment was made for 
thin-bed or boundary effects.  For each input vector, the network computed a vector of 
output values representing the corresponding lithofacies membership probabilities, and 
the most probable lithofacies was assigned for the logged interval.  The network was 
trained based on association between core-defined lithofacies and the log and geologic 
constraining variables.  A comparison of core-defined lithofacies, lithofacies membership 
probabilities, and predicted discrete lithofacies is shown in Figure 6.5. 
 
The two geologic variables were derived from a 25-formation (or member) set of tops 
(Figure 6.2), which are also the tops of marine or nonmarine (continental) half-cycles. 
Values for the depositional environment indicator were 1-nonmarine (continental) and 2-
marine, and for the Herington and Holmesville, where intertidal environments dominate, 
3- intertidal.  The MnM variable helps to distinguish between lithofacies with similar 
petrophysical properties but developed in different broad depositional environments.  
Values for the stratigraphic cycle relative-position parameter (RelPos) range linearly with 
depth from 0 at the bottom of each half-cycle interval to 1 at the top, indicating position 
within each interval.  Including this curve allowed the network to encode information 
regarding the fairly regular succession of lithofacies succession commonly exhibited 
within each interval, and thus transfer some of that character to the sequence of predicted 
lithofacies in each well.  The two curves were computed for the node wells using Visual 
Basic code within an Excel spreadsheet run in a batch-processing routine and exported as 
log curves in a LAS file format, as described in Chapter 5.  They were then combined 
with the wire-line log curves to complete the feature vector. 
 
The neural network code has been added to Kipling.xla, an Excel add-in for 
nonparametric regression and classification (Bohling and Doveton, 2000).  For this study, 
the network was trained to match observed associations between logs and lithofacies 
identified in core from a set of key wells shown in Figure 6.6 (17 Chase wells with 7108 
half-ft intervals in the training set, and 16 Council Grove wells with 6404 half-ft 
intervals).  Fundamental parameters controlling the network behavior are the number of 
nodes in the hidden layer (network size) and a damping or decay parameter.  Increasing 
the network size allows the network to match the training set more closely, but using too 
many hidden-layer nodes leads to the network becoming precisely tuned to the training 
data and unable to generalize.  Increasing the damping parameter counteracts precise 
tuning, forcing the network to develop smoother representations of the boundaries 
between lithofacies. 
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We used cross-validation to estimate the optimum values for network size and damping 
parameter.  The cross-validation was done in two ways: 1) splitting the entire training 
dataset, regardless of well, into random subsets, with 2/3 of the cases used for training 
and the other 1/3 for testing (comparison of predicted and actual lithofacies), and 2) 
taking out each well in turn, training on the remaining wells, and testing on the removed 
well.  Training and testing were repeated several times for each parameter combination to 
account for the random variation between different realizations of the network.  This 
computationally intensive cross-validation was performed using scripts in the R statistical 
computing language (R Development Core Team, 2005) using the nnet function 
developed by Venables and Ripley (2002).  The scripts computed several measures of 
correspondence between actual and predicted lithofacies, including the average 
lithofacies misallocation cost for all intervals in the test well.  This value is computed 
from a misallocation cost matrix that assigns a cost for misallocation that is proportional 
to the “distance” in lithofacies code units in the lithofacies spectrum from actual.  For 
example, calling a packstone (L7) a marine siltstone (L3) carries a higher cost than 
confusing it with a grainstone (L8) with similar petrophysical properties. Absolute 
accuracy in lithofacies prediction, though desirable, is unrealistic and our goal was to 
limit error to the nearest lithofacies class.  Plots of median average misallocation cost 
versus damping parameter and network size (panel variable) for the well-by-well cross-
validation including the photoelectric wire-line log (PE) in the Council Grove (Figure 
6.7) illustrate the median computed over 30 average misallocation costs for each 
parameter combination:  five trials per well for each of the six Council Grove wells with 
PE logs.  Cross-validation plots for the Council Grove case without PE and for the Chase, 
with and without PE were similar (not illustrated).  Although the network performed 
reasonably well over a range of parameter values, we chose to use a network size of 20 
hidden layer nodes and a damping parameter of 1.0. The damping parameter chosen (1.0) 
exhibited consistently low misallocation values and the number of hidden layer nodes 
(20) was chosen over configurations with fewer nodes that tended to over-generalize. 
 
Initially, we trained four neural networks: Chase with and without PE logs and Council 
Grove with and without PE logs.  Predictions using the model including PE were used 
wherever possible.  The Chase models included all 11 lithofacies, but the Council Grove 
models included only 10, because the fine- to medium-crystalline dolomite does not 
occur in the Council Grove in sufficient volume to be considered as a separate class.  In 
the latest modeling iteration (version Geomod 4), we added two additional models and 
split the stratigraphic section slightly differently. The uppermost model covered the upper 
part of the Chase, from the Herington to the top of the Fort Riley. The Fort Riley and 
Matfield were modeled together, and the Wreford, the lowermost zone of the Chase, was 
modeled with the Council Grove. An additional variation in the latest modeling was the 
use of “recruits” in order to increase the number of samples in the training for the 
phylloid algal bafflestone and marine sandstone in the Council Grove.  For these 
lithofacies we “harvested” log curves from intervals in wells near the cored wells where 
we were certain of the lithofacies and included them in the training set. These six neural 
network models were then applied as appropriate to produce predicted lithofacies versus 
depth logs at half-ft intervals in the 1600 node wells distributed throughout the field 
(Figure 6.3).  The batch-prediction capability of the Kipling program was used in this 
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case, with logs being read from LAS files and the predicted lithofacies curves being 
written out to LAS files. 
 

Lithofacies prediction 
 
After digital wire-line log curves and formation or member tops were gathered and 
prepared, and neural networks trained on core-defined lithofacies, the next step was to 
predict lithofacies at the ½-ft scale (0.15 m) in wells with appropriate log curves. Below 
are the steps involved in predicting lithofacies using neural networks: 

1. Alias log curves to a common name.  Curves required are gamma ray, density and 
neutron porosity, and deep resistivity.  Photo-electric curve is optional, but 
improves accuracy. 

2. Generate geologic-constraining variables including relative position to base of ½ 
cycle (RelPos) and marine-nonmarine (MnM) using an automated process.  
Output is in a Log ASCII Standard (LAS) file format. 

3. Generate log-curve predictor variables: gamma ray (API units), natural logarithm 
of the deep resistivity (lnILD), difference between neutron and density porosity 
(Nphi-Dphi), average of neutron and density porosity ((Nphi+Dphi)/2) and 
photoelectric effect (PE), if available.  

4. Create LAS formatted files, one per well, which includes the four or five log 
variables (in step 3) and MnM and RelPos curves and export files from multiple 
wells, placing them in a single file folder. 

5. Use Kipling.xla (Bohling and Doveton, 2000) neural-network module batch-
prediction option to predict lithofacies after choosing the appropriate, trained 
neural network.   

 
As part of the quality-control process, lithofacies estimated by the trained neural 
networks were then imported into and checked in Geoplus PetraTM for problems by 
mapping a variety of lithofacies statistics in 2-D maps.  This same process was part of the 
iterative process to optimize the neural network training.   
 
 
Estimate Lithofacies in Cellular Model 
 
Following construction of predicted lithofacies-depth curves, the predicted lithofacies 
curves were read into PetrelTM  (Schlumberger 3-D modeling software), and upscaled to 
the resolution of the model layers (roughly 2 ft in marine intervals and 4 ft in non-marine 
intervals) by “majority vote”:  the lithofacies for each model cell intersecting a well is 
taken to be the most frequently occurring lithofacies in that layer in the well.  Voxel-
based methods were chosen over object-based methods for lithofacies and property 
modeling due to the relatively dense well control and geometry of the lithofacies bodies 
being modeled (thin and laterally extensive). Sequential indicator simulation (Deutsch 
and Journel, 1998) as implemented in PetrelTM was used to generate lithofacies values in 
all model cells using vertical proportion curves generated with the application’s data 
analysis tool, and conditioned on the upscaled lithofacies values in the node well cells.  
Likewise, corrected porosity curves were also read into PetrelTM and upscaled using 
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arithmetic averaging.  Porosity values over the entire model were generated using 
sequential Gaussian simulation (Deutsch and Journel, 1998).  Both of these stochastic 
simulation procedures require the specification of a variogram model for each lithofacies 
describing the spatial correlation behavior of the property being simulated. 
 

Variogram Analysis 
 
Developing variogram models for two properties (facies occurrence and porosity) for 
three spatial directions, 11 lithofacies, and 24 zones – a potential total of 1584 variograms 
– is a daunting task and required some simplification and automation to be made 
tractable.  Automation was accomplished by exporting the upscaled lithofacies and 
porosity values at the wells from PetrelTM and reading them into the R statistical 
computing environment for automated processing, rather than using the interactive 
variogram analysis tools in PetrelTM.  Simplification consisted of computing only one 
variogram per lithofacies for each of the six different sub-models, rather than for each of 
the 24 zones, and imposing certain restrictions on the form of the variogram models – 
namely, using an exponential variogram model with zero nugget and horizontal isotropy 
(same range in all horizontal directions), reducing the model parameters to be estimated 
to the variogram sill, vertical range, and horizontal range.  This reduced the potential 
number of variograms to 264. 
 
Although the automation and simplification made the variogram modeling process more 
manageable, it did not eliminate interpretational difficulties caused by non-ideal behavior 
of the empirical variograms, computed from the upscaled data at the wells.  Prior to 
analysis, both the lithofacies data and the porosity data are subjected to scalings that 
should result in variogram sills, reflecting the global variance value, of 1.  However, 
many of the computed variograms, particularly those in the horizontal direction, failed to 
reach a sill of 1.0.  This is probably due in part to zonal anisotropy (Deutsch, 2002), 
meaning that the full range of variability (used in the scaling process) is not seen when 
examining data from vertically limited windows along the horizontal direction.  This 
causes complications in variogram fitting because a sill of 1.0 is enforced on the model 
variogram, meaning that the model variogram cannot possibly match the empirical 
variogram in this case.  In addition, many of the horizontal variograms exhibit higher 
nuggets, reflecting short-scale variability, than we are willing to use in the model 
variogram.  Use of a high nugget in the variogram model causes the simulated lithofacies 
and porosities to be very noisy or patchy, a behavior that we do not believe reflects 
reality, despite the high nuggets in the empirical variograms.  In theory, the horizontal 
and vertical variograms should share the same nugget value.  It is common practice to 
weight the vertical variogram more heavily in the nugget estimation, because the vertical 
variogram is generally derived from dense, regularly sampled data and therefore reflects 
short-scale variation more accurately.  In this case, we have taken the extreme measure of 
enforcing a zero nugget in all cases, a decision that is at least not too strongly 
contradicted by the vertical variograms.  However, this means that the fitted variogram 
models do not match the apparent nuggets in the empirical horizontal variograms in many 
cases. 
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Lithofacies variograms 
 
For each of the six submodels, the upscaled lithofacies and porosity values at the wells 
were exported from PetrelTM to a GSLIB-format ASCII data file.  These data files were 
then read into the R statistical analysis package for processing with the Gstat package 
(Pebesma, 2004).  A set of R-language scripts was developed to compute the empirical 
lithofacies occurrence variograms in both the vertical and horizontal directions, by 
lithofacies for each submodel, and fit an exponential variogram model to the empirical 
variogram, as long as there was adequate data to estimate the empirical variogram for that 
lithofacies and submodel.  For a binary variable like lithofacies occurrence, the global 
variance should be given by p*(1-p), where p is the global proportion of the lithofacies in 
the dataset being considered.  Thus, scaling by p*(1-p) should yield an empirical 
variogram with a sill of 1.0.  As mentioned above, this was not the case for many of the 
lithofacies variograms.  In an attempt to reduce the effects of zonal anisotropy, the 
variogram computation scripts employed here actually apply this scaling on a layer-by-
layer basis and then average the scaled variograms for all the layers to obtain a variogram 
for the entire submodel.  The reasoning behind this is that a lithofacies proportion, p, 
estimated for each layer, should provide a more appropriate scaling for that layer than a 
lithofacies proportion estimated from the entire dataset.  This process did seem to reduce 
the zonal anisotropy problems relative to the globally scaled variograms, but did not 
eliminate those problems. 
 
With the imposed constraints on the model form – an exponential model with a zero 
nugget – the model-fitting process was reduced to estimating the vertical and horizontal 
ranges.  Figure 6.8 shows the empirical vertical variograms for lithofacies five for all six 
submodels, along with the fitted exponential models.  Again, the model sill of 1.0 is 
enforced by theory (and by PetrelTM).  Overall, these fits are not bad and the decision to 
enforce a nugget of zero does not cause significant difficulties.  The hints of oscillatory 
behavior in the empirical variograms for a few of the submodels are not surprising, 
because one expects to see oscillations in a variogram describing a property displaying 
cyclicity.  These results are reasonably typical of vertical variograms for all lithofacies.  
Note that a maximum value of 25 ft was imposed on the fitted vertical ranges and range 
estimates for some badly behaved empirical variograms did reach this upper limit, 
essentially indicating an inability to obtain a reasonable fit. 
 
Figure 6.9 shows the set of horizontal empirical variograms for lithofacies 5, along with 
the fitted models.  These empirical variograms display the typical problems:  high 
nuggets and sills less than 1.0.  The resulting fits are also typical of the horizontal fits for 
all lithofacies.  The fit for the Winfield-Fort Riley interval (WinFtRiley) is almost 
reasonable, although clearly not perfect.  The fitted horizontal range in this case is 11,500 
ft.  The fitted range for the B2LM-B4LM interval is very short, 3700 ft, to fit an 
empirical variogram that is almost pure nugget.  (A pure nugget model would describe a 
process that is purely random in space, displaying no spatial autocorrelation.)  The fitted 
range Fort Riley-A1SH interval, 42,000 ft, is much larger than we expect, approaching 
the imposed maximum fitted range of 50,000 ft.  This fit is essentially meaningless, 
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reflecting the inability to match the observed variogram under the imposed model 
constraints. 
 

Applying variogram analysis results in the model 
  
The fitting exercise described above resulted in a very large tabulated set of estimated 
vertical and horizontal ranges for lithofacies occurrence and porosity for all 11lithofacies 
in all six submodels (three in the Chase and three in the Council Grove) having sufficient 
data for a given lithofacies. A qualitative evaluation of the quality of the fit, which ranged 
from good to meaningless (for cases where the fitted model failed to match the empirical 
variogram at all – often cases where the range estimate reached the imposed upper limit 
of 25 ft in the vertical or 50,000 ft in the horizontal) was assigned to the ranges for each 
variogram analysis. These data were then combined by group (Chase or Council Grove) 
or by combined groups (Wolfcamp) in the cases where there were not sufficient data at 
the group level, in summary tables (Tables 6.3 and 6.4).   Fitted ranges by individual 
submodels were not used, but were instead generalized for different combinations of 
intervals and lithofacies.  In cases where there were sufficient data, mean values for 
ranges by lithofacies by group (Chase or Council Grove) were calculated and 
implemented in the modeling.  Where there were insufficient data by group (Chase or 
Council Grove, separately), but sufficient when the data were combined, then mean 
ranges for the combined groups (Wolfcamp) were calculated and implemented in the 
modeling. For lithofacies where ranges could not be estimated from the analysis, ranges 
from adjacent lithofacies were generally used. Ranges of 50,000 or greater were not 
considered.  Tables 6.3 and 6.4 generally describe the variograms used for version 
Geomod 4.  Slightly different major and minor axis for marine lithofacies results in 
elliptical ranges.  We have no quantitative data to support the choice to establish a slight 
bias with an azimuth for lithofacies.  However, there is a tendency for lithofacies geo-
bodies to trend parallel to the depositional strike (north 11 degrees east) in the models 
constructed, so a slight bias was used during modeling. For details see digital appendix 
Geomod4_variograms. 
 
 
6.4 LITHOFACIES DISTRIBUTION IN THE STATIC MODEL 
Martin K. Dubois 
 
Lithofacies and property distributions in the 3-D Hugoton cellular geomodel presented 
are consistent with earlier work on the Hugoton (Garlough and Taylor, 1941; Hubbert, 
1953; Pippin, 1970; Parham and Campbell, 1993; Fetkovitch et al., 1994; Oberst et al., 
1994, Seimers and Ahr, 1990; Olson et al., 1997; Heyer, 1999; Sorenson, 2005), although 
the present model covers a larger scale at a finer resolution than these studies.  The full-
field geomodel presented here reveals lithofacies and property patterns that could not be 
identified at smaller scales. Figures 6.10 to 6.19 are a series of cross sections and map 
views of lithofacies and properties for the six individual models.  General trends in 
thickness and lithofacies distribution are evident in the 3-D volume: continental rocks are 
thickest and marine carbonate intervals thin or pinch out at Hugoton’s western updip 
margin and the relationship is nearly reciprocal basinward. The important reservoir 
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lithofacies (grain-supported carbonate, dolomite, marine and continental sandstone) are 
laterally extensive and the marine carbonates, the primary pay zones, are separated by 
laterally continuous continental siltstone with poor vertical transmissibility.  
  
 
Quantitative Measures of Lithofacies at Varying Scales 
 
Quantitative measures of lithofacies proportions (Table 6.5) in core, neural network 
predicted lithofacies at node wells, upscaled at the node wells and in the 108 million-cell 
model, show consistency at the different scales, suggesting that the sample rate for 
training and lithofacies prediction in each of the three steps was sufficient. Slight 
variations in the measures are likely to be related to sample distribution in core versus the 
node wells and the increase in scales from 0.5 ft (0.15 m) to considerably thicker cells 
(layers).  A number of factors related to the nature, geometry and distribution of the 
predicted lithofacies and the variables chosen to predict lithofacies are believed to have 
enabled the success of the neural networks in predicting lithofacies at the node wells and 
the modeling of lithofacies between nodes.  Lithofacies classes were chosen to maximize 
differences in the signature of wire-line log variables. Geologic constraining variables 
(e.g., relative position curve and marine-nonmarine curve) captured and leveraged 
geologic information such as the predictable vertical succession of lithofacies in the 
sedimentary cycles and primary depositional environment. The extensive lateral 
continuity of the lithofacies, with typical lithofacies-body sizes much larger than the 
lateral spacing between node wells, contributed to the success of the sequential indicator 
simulation of the lithofacies distribution. Significantly, adequate core control enabled 
appropriate sampling of the reservoir system for the lithofacies training set.  Without 
core, the model could not have been built. 

 
The most common misallocations of lithofacies were prediction of grainstone (L8) as 
wackestone or packstone (L5 and L7), predictions of carbonate mudstone (L4) as 
wackestone (L5), and predictions of the continental sandstone (L0) as coarse siltstone 
(L1).  These incorrect lithofacies predictions reflect overlaps of the log characteristics of 
the lithofacies. Fortunately, the lithofacies involved are also sufficiently similar in their 
petrophysical properties that the resulting distributions of porosity, permeability, and 
water saturation resulting from random misallocations were not significantly different 
from correct properties distributions, discussed in Chapter 4, section 2. 
 
The “majority vote” upscaling of lithofacies from the half-ft sampling interval to the 
thickness of the model layers intersecting each well did not significantly alter the 
lithofacies populations.  Using this methodology we would not expect to see a significant 
difference in lithofacies populations unless certain lithofacies typically occurred in thin 
bodies separated by fairly large vertical intervals, resulting in a systematic under-
representation of those lithofacies in the upscaled results.  Finally, the lithofacies 
proportions in the full 3-D model closely reflect those for the upscaled well cells.  This is 
not surprising, because the stochastic indicator simulation attempts to match the 
proportions observed in the conditioning data. The distribution of our node wells was 
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sufficiently uniform such that the lithofacies proportions in the conditioning set were very 
similar to those in the reservoir system. 
 
 
Lithofacies Distribution in the Model 

 
Large-scale sedimentation patterns, interpreted from lithofacies distribution, are striking 
when viewed at the scale made possible by the full field-scale model.  In cross section at 
the inter-cycle scale, back-stepping of major lithofacies associated with changes in water 
depth and energy are evident in the Chase marine carbonate (Figure 6.10), particularly in 
the two dolomite lithofacies.  The position on the shelf where continental siliciclastics 
thicken at a higher rate also back-steps in a similar manner.  Marine carbonates in the 
middle three of the seven Council Grove cycles (Figure 6.10C) pinch out at the western 
field margin.  The gradual shift in the paleo-shoreline position, first to lower on the shelf 
and then back to a higher position, is believed to be related to a change in sea level 
amplitude.  The symmetry demonstrated by sedimentation patterns around the middle 
cycle of the seven fourth-order Council Grove cycles suggests the possibility of higher-
order cyclicity in the latter part of the middle Paleozoic icehouse.  Large and small-scale 
patterns in the 3-D volume are especially useful in illustrating depositional model 
concepts discussed in Chapter 3, lithofacies distribution within and between cycles, and 
for the entire Wolfcamp (Figure 6.11).  The 3-D view in the fence diagram format also 
illustrates the vertically heterogeneous, laterally continuous nature of the layered 
reservoir system. 

 
One of the more striking aspects of the model from a reservoir perspective is the 
demonstration of lateral continuity in the lithofacies illustrated in Figures 6.12 through 
6.19.  County-scale “connected volumes” of the more significant reservoir lithofacies are 
sub-parallel to depositional strike and the field margin.  Grain-supported packstone in the 
Crouse (Figure 6.12A, B1_LM, Council Grove) is found primarily in the eastern half of 
the field while muddier lithofacies are dominant in the western, more sheltered shoreward 
portion of the shelf.  These same relationships (grain-supported textures toward the shelf 
margin and muddier carbonate inboard) hold true for both the Council Grove (Figure 6.13 
and 6.14) and Chase (Figure 6.15). However, the updip extent of rocks having grain-
supported textures varies from cycle-to-cycle, most likely a function of changing 
hydrodynamics due to third-order cyclicity and overall global climatic shift from 
icehouse to greenhouse during the Lower Permian (Parrish and Peterson, 1988; Ross and 
Ross, 1988; Parrish, 1995; Rankey, 1997; Soreghan, 2002), discussed in detail in Chapter 
3.  In the Council Grove, the main pay lithofacies are packstone-grainstone (L7) and very 
fine crystalline dolomite (L6); however, the phylloid algal bafflestone lithofacies (L8) is 
important locally.  Marine sandstone (L10) does not contribute to Council Grove 
production except for in the Grenola (C_LM) in the very southwest corner of Texas 
County, Oklahoma (Figure 6.14), where the production is associated with a FWL that is 
different from that of the Hugoton-Panoma reservoir system (see Chapter 7).  
 
Major contributing lithofacies (having good reservoir properties for storage and flow) are 
more variable in some Chase zones (Towanda, Krider, and Winfield) and their 
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contrasting spatial relationship is illustrated in the model (Figure 6.15). By far the most 
prolific reservoir lithofacies is medium-crystalline moldic dolomite (L9), which is 
restricted to the Chase.  Other high-quality lithofacies are L7 and L10.  L9, essentially 
dolomitized L7, is best developed in the middle to upper Chase (Towanda, Winfield, and 
Krider) while L7 is in the grain-supported category in the Wreford and Fort Riley. 
Marine sandstone contributes significantly to reservoir volume in the Towanda, Winfield, 
and Herington.  Where two major reservoir lithofacies coexist in the Towanda, Winfield, 
and Krider, they tend to be best developed in different areas of the shelf rather than 
overlap (Figure 6.15). 
 
Continental sandstone (eolian) is limited to the northwestern updip margin in the Council 
Grove (Figure 6.12B and 6.16), and shallow marine and tidal flat sandstone in the upper 
Chase is most abundant in the northwestern half of the field area (6.12C and Figure 6.17). 
Little continental sandstone occurs in the Chase while the occurrence of marine sandstone 
in the Council Grove is rare except as noted above. Noteworthy is that sandstone 
deposited in an offshore or deep-water environment is absent from the entire Wolfcamp 
and that sandstone is generally restricted to the updip (shoreward) portion of the shelf 
(see Chapter 3). 

 
The core to model lithofacies workflow was sufficiently robust to characterize smaller 
important lithofacies bodies in the reservoir system (Figures 6.12-D, E, F, 6.18 and 6.19). 
For example, dolomitized grainstone and packstone of a relatively thick (30 ft, 10 m) 
carbonate ooid-bioclast-sand shoal system in the southern half of the field is known to be 
an important contributor to storage and flow capacity in the Krider (Sorenson, 2005, 
personal communication).  Modeling of this important lithofacies shows the lateral 
continuity of a 4-mil- wide, 30-mile-long (6.5X50 km) “sweet spot” (porosity > 18%; 
Figures 6.12F and 6.18). By comparing screen captures of a 3-D view of this shoal in 
cross section and as a continuous volume (Figure 6.18) with 2-D map views of 3-D 
continuous volumes (Figure 6.15), a complete picture of the Krider reservoir system from 
fine to large scale is gained, illustrating the power of the cellular model.  The main flow 
lithofacies (dolomitized ooid-bioclast) grainstone changes to packstone-grainstone of 
lower reservoir quality in a westerly direction, updip and towards the field margin as 
illustrated in cross-section (Figure 6.18) and map view (6.15).  To the north, the shoal 
lithofacies changes to packstone-grainstone and wackestone of low reservoir quality.  The 
connected volume approach, with the filter set in the high porosity range, captures the 
most prolific portion of an extremely large carbonate-sand system that covered much of 
Stevens County, Kansas, and north-central Texas County, Oklahoma.  
 
Another interesting set of geobodies that are effectively characterized in the cellular 
geomodel is a phylloid algal-mound system in the Cottonwood Limestone Member 
(B5_LM) shown in Figure 6.19.  Map views of 3-D connected volumes of three 
lithofacies, packstone-grainstone, very fine-crystalline dolomite, and phylloid algal 
bafflestone, suggest a patchwork of lithofacies.  Closer examination in 3-D cross section 
and blocked lithofacies at the node wells better illustrates the overlapping nature of the 
three discrete lithofacies and their interrelationships.  The relatively thick mound facies 
(20 ft, 6 m in the Churchman Bible, a cored well) tends to occur in the lower half of the 
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Cottonwood and is interpreted as being deposited in moderate water depths. Dolomitized 
mudstone and wackestone (L6) occupy much of the inter-mound space and packstone-
grainstone (L7) caps the shoaling-upward cycle.  Algal mounds are most common in the 
Cottonwood (B5_LM) and Crouse (B1_LM) and are effective reservoirs where algal 
grains are dissolved to form large connected moldic porosity in a position above the 
FWL. Unfortunately, most of the mounds in the Cottonwood are below the FWL and are 
non-productive. 
 
 
Property Distribution in the Model 
 
Distributions of lithofacies-dependent properties (porosity, permeability and water 
saturation) reflect the lithofacies distribution (Figure 6.20), as one would expect.  The 
best porosity and permeability coincide with the main reservoir lithofacies (Figure 6.13).  
Laterally extensive low permeability intervals separate the relatively high permeability 
pay zones of the layered reservoir system.  Water saturations are high in the confining 
intervals and the “gas-water” contact crosses stratigraphic boundaries at the east downdip 
margin as the pay intervals dip below the surface and on the west where the free water 
level is thought to rise more quickly than the rate of dip. 
 
 
6.5 POROSITY MODEL 
Martin K. Dubois and Geoffery C. Bohling 
 
The principal tasks involved in development of the Porosity Model included compilation 
and quality analysis of the industry and KGS LAS well-log files at node wells as 
described in Chapter 4 and in section 6.2, above. Corrections to standard porosity log 
curves are discussed in Chapter 4 and below. The development of the variograms used 
within PetrelTM for populating grid cells between wells and the modeling process is also 
discussed. 
 
 
Porosity correction (PhiCorr) 
 
Because porosity correction algorithms (Chapter 4, section 4.3) are lithofacies dependent 
it is only after lithofacies have been generated for all node wells that log porosity can be 
adjusted. After lithofacies have been predicted and lithofacies curves have been 
assembled in another application (by merging or otherwise), we applied the lithofacies-
dependent algorithms discussed in Chapter 4, section 4.3, to correct for the influence of 
mineralogical variations, gas effect, and washouts on log porosities, employing the 
following steps: 

1. Generate LAS format files containing Nphi (decimal), Dphi (decimal, 2.71 
matrix), N-Dphi (decimal, average), and lithofacies coded from 1-11, one well per 
file and placed in a single folder. 
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2. Correct porosity for mineralogy and washout effects using an automated porosity 
correction tool developed for the project. Output is corrected porosity in a LAS 
file format. 

3. Import LAS files with corrected porosity into another application and check for 
quality. 

 
 
Modeling Porosity 
 
As in the case for lithofacies modeling, voxel-based methods were chosen over object-
based methods due to the relatively dense well control and geometry of the lithofacies 
bodies being modeled (thin and laterally extensive). Corrected porosity curves were read 
into PetrelTM and upscaled from 1/2-ft (0.15 m) to layer scale (2-4 ft) using arithmetic 
averaging, biased by upscaled lithofacies at the node wells. Porosity values over the 
entire model (between node wells) were generated using sequential Gaussian simulation 
(Deutsch and Journel, 1998) as implemented in PetrelTM, utilizing porosity transforms 
generated with the application’s data analysis tool and conditioned by lithofacies.  The 
stochastic simulation procedures require the specification of a variogram model for each 
lithofacies, describing the spatial correlation behavior of the property being simulated. 
 
 
Porosity Variograms 
 
The process for computing and fitting the porosity variograms was essentially identical to 
that for the lithofacies variograms, except for the scaling step.  Continuous variables like 
porosity are typically passed through a normal score transform, essentially replacing the 
original data with perfectly normally distributed data, prior to variogram computation and 
simulation, and this step is included in the variogram computation scripts.  Again, this 
transformation is applied on a layer-by-layer basis for the horizontal variograms, to try to 
reduce the influence of zonal anisotropy.  Overall, the behavior of the porosity 
variograms is similar to that of the lithofacies variograms, except that the porosity 
variograms are noisier overall.  Figures 6.21 and 6.22 show the vertical and horizontal 
variograms for porosity in lithofacies 5 over all six subintervals, along with the fitted 
models.  The most noticeable difference in behavior relative to the lithofacies variograms 
is that the vertical porosity variograms are considerably noisier.  This behavior is typical 
for all lithofacies. 
 
 
 
6.6 PETROPHYSICAL MODEL 
Alan P. Byrnes and Martin K. Dubois 
 
Model Permeability and Saturations 
 
In addition to populating gridcells with lithofacies and porosity, as discussed above, the 
workflow process involves populating the gridcells with permeabilities (kxy and kz) and 
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fluid saturations. Modeling petrophysical properties for each cell of the geomodel 
requires utilization of 1) the petrophysical algorithms, discussed in Chapter 4 section 4.2, 
2) the lithofacies model discussed above, where lithofacies is assigned to each of the 108-
million gridcells, 3) the porosity (φ) model discussed above, and 4) for water saturations 
and relative permeability, the capillary-pressure models discussed in Chapter 4, section 
4.2, and the free-water level model discussed in Chapter 7 section 7.2.   
 
As noted, the porosity and lithofacies models were upscaled from the initial half-ft thick 
scale to the scale of model layers (roughly 2-ft thick in marine intervals and 4-ft thick in 
non-marine intervals). Lithofacies were upscaled vertically by “majority vote” where the 
lithofacies for each model cell intersecting a well was taken to be the most frequently 
occurring lithofacies in that layer in the well. Porosity was upscaled vertically using 
facies-biased arithmetic averaging. For the lithofacies distributions for each layer, this 
averaging method calculated average porosity values that were negligibly different from 
an arithmetic average. Using these upscaled values at the node well gridcells, the 
complete 108-million cell geomodel was populated with lithofacies and porosity values 
utilizing the variograms and spatial interpolation algorithms input into PetrelTM. In 
addition, the free-water level elevation was assigned for each XY location utilizing the 
input free-water level database. Details on upscaling lithofacies and porosity are 
presented in appendix Geomod4_build. 
 
Using the porosity and lithofacies data in each gridcell, in situ- Klinkenberg gas 
permeability (kik) was calculated for each gridcell using the equations presented in Table 
4.2.6 with input of the lithofacies and porosity of the gridcell. Vertical permeability (kvert) 
was calculated for each cell by multiplying the calculated horizontal permeability, kik, by 
the average kvert/khavg ratio for each lithofacies, as presented in Chapter 4, section 
4.2.Water saturation (Sw) and gas saturation (Sg = 1-Sw) were calculated for each gridcell 
utilizing 1) the lithofacies-porosity-specific capillary-pressure equations summarized in 
Table 4.2.8, 2) the lithofacies of the gridcell, 3) the porosity of the gridcell, 4) the gridcell 
elevation, and 5) the free-water level elevation at the XY location of the gridcell. Finally, 
original gas in place (OGIP) for each gridcell was calculated:  
 

OGIP = Vgridcell  φ Sg Eg  
 
Where Vgridcell is the volume of the gridcell and Eg is the gas expansion factor appropriate 
for the input reservoir gas composition at the input initial reservoir pressure and 
temperature, defined in the fluid properties database, and discussed in Chapter 10. 
 
Gas- and water-relative permeability properties were not calculated for each gridcell in 
the static model because relative permeability curves presented in Chapter 4, section 4.2, 
were input into the dynamic model, as discussed in Chapter 9. Though it was not 
performed, relative permeabilities could have been calculated for each gridcell using the 
relative permeability equations discussed in Chapter 4, section 4.2, and the calculated 
water saturations (Sw) discussed above.  
 
Influence of Upscaling on Properties 
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The process of geomodel construction involves the upscaling of lithofacies and porosity 
from the half-ft scale to the 2-ft to 4-ft thick layer scale. For the geomodels constructed, 
permeability was calculated from the upscaled-layer porosities and not the half-ft scale 
porosities. This introduces the potential for model-calculated permeabilities to have 
different values from layer permeabilities that might be calculated by upscaling 
permeability values calculated at the half-ft (i.e., bed) scale. The potential difference 
between these two methods of calculating permeability is dependent on the range in 
porosity that exists within the layer, the half-ft scale lithofacies present in the layer, the 
lithofacies assigned to the total layer, and the k-φ relations of the lithofacies. To examine 
how much difference could exist between these permeability-calculation methods, the 
two methods were compared for the Flower A-1 well, which is considered representative 
of the range of properties often encountered. Model layer permeability compared are 
those from the 70 mi2, 209-layer static model constructed specifically for the Flower 
simulation model (Chapter 9), built in the same manner and nearly identical property 
transforms as the full-field geomodel. Model zone permeability was extracted from the 
Flower 25-zone simulation model that was upscaled from the static model. 
 
In the Flower A-1, the Chase and Council Grove Groups range over a depth of 2473 ft to 
2972 ft, representing 998 half-ft intervals. These half-ft intervals were upscaled to 209 
layers as shown in Figure 6.23. For these layers an average porosity was calculated 
arithmetically and the principal lithofacies assigned to each layer. Permeability (kavg-layer) 
was calculated for each layer using the layer porosity and layer lithofacies and the k-φ 
equation presented in Table 4.2.6. Figure 6.24 shows a comparison between the layer 
permeabilities (kavg-layer) and permeabilities that were calculated by arithmetically 
averaging the permeabilities of the half-ft beds contained within the layer (kavg-bed). 
Figure 6.25 shows a histogram of the ratio of the layer-permeability to the bed-upscaled 
permeability (kavg-layer/ kavg-bed).  
 
As discussed in Chapter 8, section 8.1, in a parallel-flow architecture, permeabilities 
calculated for a single k-φ transform from an average porosity are always less than the 
arithmetically averaged permeability calculated from the individual-porosity intervals 
from which the average porosity was comprised. The cumulative frequency distribution 
in Figure 6.25 shows that for approximately 10% of the layers, the layer-upscaling 
method under-predicts permeability by greater than a factor of 5. For approximately 10% 
of the layers, this method under-predicts permeability by a factor of 2 to 5. Only for ~5% 
of the layers is the layer-permeability greater than 2 times the bed-upscaled permeability, 
and in only 0.5% is the layer-permeability greater than 5 times the bed-upscaled 
permeability. For a vertical set of rocks of identical lithofacies, the kavg-layer/ kavg-bed ratio 
never exceeds a value of 1. The reason this ratio exceeds 1 in a small fraction of the 
population is that for these layers the lithofacies assigned to the layer exhibits a higher 
permeability-porosity trend than some fraction of the bed lithofacies. Layers for which 
the kavg-layer/ kavg-bed ratio is less than 0.5 generally exhibit a large difference in 
permeability due to the presence of a thin, significantly higher-permeability bed, relative 
to the other beds in the layer. Figure 6.24 illustrates that differences between these 
permeability-calculation methods can occur for layers of widely varying upscaled 
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permeability, although differences of greater than a factor of 2 occur less frequently for 
layers with permeability > 1 md (10%) compared to layers with permeability < 1 md 
(20%). Eliminating the low skewed samples, the methods can be characterized as 
agreeing with a standard deviation of 40% (i.e., 75% of the permeabilities agree within 
the kavg-layer/ kavg-half-ft range of 0.6-1.4). This difference between these permeability-
calculation methods is not significant and falls within the standard errors of prediction of 
permeability from porosity and lithofacies, which exhibit an average error of 5.1X 
(Chapter 4, section 4.2). 
 
 
Upscaling the Static Model to the Dynamic Model 
 
The 108-million cell static geomodel provided a detailed and precise model for defining 
reservoir properties throughout the Hugoton area. Challenges posed by the large model 
size were handled by subdividing the model into six layers, as discussed above. However, 
for dynamic reservoir simulation modeling that was utilized to investigate regional flow 
or communication between layers, the large number of gridcells in the geomodel 
precluded the direct use of this model in dynamic reservoir simulation. To reduce the 
number of gridcells in the geomodel to a size that could be utilized conveniently by the 
reservoir simulation software, static geomodel properties were upscaled. In this process, 
the properties of the 2-ft to 4-ft thick layers were upscaled to 10-ft to 50-ft thick zones 
where each zone represents the half-cycle of a stratigraphic member (i.e., a stratigraphic 
member is composed of two zones, a marine half-cycle zone and nonmarine half-cycle 
zone). The thicknesses of the zones were determined by the stratigraphic tops and gridcell 
thicknesses at the given XY location. Porosity and water saturation were upscaled using 
volume-weighted arithmetic averaging. Permeability was upscaled using the PSK-solver 
tensor algorithm in PetrelTM. Details on upscaling the static model to the dynamic 
reservoir simulation model are presented in the digital appendix Geomod4_build and 
properties are discussed in Chapter 9. 
 
As with the upscaling of layers discussed above, the upscaling of layers to zones 
introduced the potential for differences between permeabilities calculated from layers and 
those calculated using the PSK-solver tensor analysis. Figure 6.26 shows a crossplot for 
25 zones upscaled from the 209 layers of average-zone permeabilities calculated using 
tensor- and volume-weighted arithmetically averaged layer permeabilities (where the 
zone permeability represented the volume-weighted arithmetic average of all the layers 
within the zone) versus bed arithmetically average permeability for the zone (i.e., where 
the zone permeability represented the arithmetic average of all half-foot thick beds in the 
zone). Layer- and tensor-calculated zone permeabilities average 80+30% (error is 1 
standard deviation) of the bed-permeabilities. Layer-permeabilities average 97% of 
tensor-calculated permeabilities indicating little difference between these calculation 
methods. This close correspondence is primarily because the tensor solution for 
permeability has little effect for vertically stacked single cells where parallel flow 
dominates. If the system being upscaled involved a greater number of cells horizontally, 
it would be anticipated that the tensor-calculated zone permeabilities would exhibit 
greater permeability as a function of the presence of thin high-permeability layers. In 

 6- 20



Figure 6.26 there are four zones for which the bed-upscaled zone permeability is 
significantly greater than the layer- and tensor-calculated zone permeabilities. Without 
exception each of these zones contains one or two layers where the layer permeabilities 
(kavg-layer) were significantly less than the bed-upscaled permeability (kavg-bed) due to the 
presence of thin, high-permeability beds. Some zones contain one or two layers that 
exhibit exceptionally low permeability but these do not significantly affect the zone 
average permeabilities. 
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Chase Cgrv
HRNGTN A1_SH
KRIDER A1_LM
ODELL B1_SH
WINF B1_LM
GAGE B2_SH
TWND B2_LM
B/TWND B3_SH
FTRLY B3_LM
B/FTRLY B4_SH
WREFORD B4_LM

B5_SH
B5_LM
C_SH
C_LM
D_SH  

Table 6.1 Tops set for 25 formation/member level (1/2-cycle) intervals, or zones in the 
cellular geo-model. Seven of the tops were used for the structural framework: Herington 
(HRNGTN), Winfield (WINF), Fort Riley (FTRLY, Speiser (A1_SH), Middleburg (B2_LM), 
Morrill (B4_LM), and Base of Grenola (D_SH). 
 
 
4 Header files:
Framework only 7250
LAS_Both Chase-Cgrv 954
LAS Cgrv only 294
LAS Chse only 352 total 8850

3 Tops files:
Framework (7tops) 8556 = 7250 + 1306 (Chase LAS 954 + 352)
Chase (11 tops) 1306 with LAS
Council Grove (15 tops) 1248 with LAS

LAS files: GR, PhiCorr and Lithofacies

7 Framework Grids: Herington, Winfield, Ft Riley, A1_SH, 
B2_LM, B4_LM, and D_SH

Free Water Level Grid  
 
Table 6.2. Input files required for building cellular geomodel. Abbreviations include: LAS 
– Log ASCII Standard format; Cgrv – Council Grove. 
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Chase Group – Lithofacies variograms
General Rules:

1. Horizontal major axes are 
average for either the Chase 
or Wolfcamp (Chase & 
Council Grove)

2. For lithofacies 3-10, minor 
axis is 5/6th of major (as in 
Geomod3).  Seemed to work 
fine in Geomod3.

3. Azimuth is 11 degrees, same 
as in Geomod3.  This is 
approximate regional strike.

4. Vertical ranges are average 
for either the Chase or 
Wolfcamp (Chase & Council 
Grove).

5. Used shorter vertical ranges 
for facies that are out of place 
for the zone

6. Nugget = 0 and Sill = 1

Chase Group

Facies
Major (k-

ft)
Minor 
(k-ft) Az

Vertical 
(ft) Horizontal Vertical

0 30 30 17 Poor* Chase
1 25 25 17 Poor* Chase
2 25 25 17 Poor* Chase
3 24 20 11 11 Wolfcamp Chase
4 18 15 11 7 Wolfcamp Chase
5 18 15 11 7 Wolfcamp Chase
6 30 25 11 16 Wolfcamp Wolfcamp
7 27 23 11 16 Chase Chase
8 NA NA NA NA None in Chase None in Chase
9 27 23 11 16 Poor, same as F7* Poor, same as F7*

10 25 21 11 21 Chase Chase

Major axis is average for Chase or Wolfcamp (Chase & Council Grove)
Minor axis is 5/6th of major (as in Geomod3)
Azimuth = 11 degrees, as in Geomod 3
Rationale:
Chase Used average for Wlfcmp (Chase & Council Grove)
Wolfcam Used average for Chase
Poor* One HZ variogram in Chase F0-F2 = 29902.
*F9 variogram parameters modified later for more deterministic outcome

RationaleGeneral Rules:

1. Horizontal major axes are 
average for either the Chase 
or Wolfcamp (Chase & 
Council Grove)

2. For lithofacies 3-10, minor 
axis is 5/6th of major (as in 
Geomod3).  Seemed to work 
fine in Geomod3.

3. Azimuth is 11 degrees, same 
as in Geomod3.  This is 
approximate regional strike.

4. Vertical ranges are average 
for either the Chase or 
Wolfcamp (Chase & Council 
Grove).

5. Used shorter vertical ranges 
for facies that are out of place 
for the zone

6. Nugget = 0 and Sill = 1

Chase Group

Facies
Major (k-

ft)
Minor 
(k-ft) Az

Vertical 
(ft) Horizontal Vertical

0 30 30 17 Poor* Chase
1 25 25 17 Poor* Chase
2 25 25 17 Poor* Chase
3 24 20 11 11 Wolfcamp Chase
4 18 15 11 7 Wolfcamp Chase
5 18 15 11 7 Wolfcamp Chase
6 30 25 11 16 Wolfcamp Wolfcamp
7 27 23 11 16 Chase Chase
8 NA NA NA NA None in Chase None in Chase
9 27 23 11 16 Poor, same as F7* Poor, same as F7*

10 25 21 11 21 Chase Chase

Major axis is average for Chase or Wolfcamp (Chase & Council Grove)
Minor axis is 5/6th of major (as in Geomod3)
Azimuth = 11 degrees, as in Geomod 3
Rationale:
Chase Used average for Wlfcmp (Chase & Council Grove)
Wolfcam Used average for Chase
Poor* One HZ variogram in Chase F0-F2 = 29902.
*F9 variogram parameters modified later for more deterministic outcome

Rationale

 
Chase Group – Porosity variograms

General Rules:

1. Horizontal major axes are average for either the Chase or Wolfcamp (Chase & Council Grove), except F0-2

2. Range for F0-2 are proportionately larger than for facies

3. For lithofacies 3-10, minor axis is 5/6th of major (as in Geomod3).  Seemed to work fine in Geomod3.

4. Azimuth is 11 degrees, same as in Geomod3.  This is approximate regional strike.

5. Vertical ranges are average for either the Chase or Wolfcamp (Chase & Council Grove).

6. Used shorter vertical ranges for facies that are out of place for the zone (5 feet)

7. Nugget = 0 and Sill = 1

CHASE

Facies
Major 
(k-ft)

Minor 
(k-ft) Az

Vertical 
(ft) HZ VERT

0 42 42 25 Poor* Cgrv, NA in Chase
1 35 35 15 Poor* Wolfcamp
2 35 35 9 Poor* Wolfcamp
3 32 27 11 16 Wlfcmp Wolfcamp
4 32 27 11 16 NA, used F3 NA, used F4
5 36 30 11 21 Cgrv, NA in chase Wolfcamp
6 27 23 11 17 Cgrv, NA in chase Wolfcamp
7 34 28 11 14 Cgrv, NA in chase Wolfcamp
8 NA NA NA NA None in Chase None in Chase
9 39 33 11 20 Poor, same as F7 Chase
10 37 31 11 20 Chase Chase

Rationale

 
Table 6.3.  Variograms ranges used in modeling lithofacies and porosity in the Chase 
Group, less the Wreford. Top is a summary table showing the mean value for horizontal 
and vertical variogram ranges by lithofacies, the stratigraphic interval from which the 
mean was calculated, and rules employed to develop the table.  A similar table for 
porosity variogram ranges is shown at the bottom. 
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Council Grove Group – Lithofacies variograms
General Rules:

1. Where available, horizontal 
major axes are average for 
Council Grove.

2. For lithofacies 3-10, minor 
axis is 5/6th of major (as in 
Geomod3).  Seemed to work 
fine in Geomod3.

3. Azimuth is 11 degrees, same 
as in Geomod3.  This is 
approximate regional strike.

4. Where available vertical 
ranges are average Council 
Grove.

5. Used shorter vertical ranges for 
facies that are out of place for 
the zone

6. Nugget = 0 and Sill = 1

Council Grove Rationale

Facies
Major 
(k-ft)

Minor 
(k-ft) Az

Vertical 
(ft) Horizontal Vertical

0 40 40 10 Poor est Poor est
1 25 25 10 Cgrv Cgrv
2 25 25 8 Cgrv Cgrv
3 30 25 11 11 Cgrv Cgrv
4 18 15 11 7 Cgrv Cgrv
5 18 15 11 7 Cgrv Cgrv
6 30 25 11 10 Cgrv Cgrv
7 18 15 11 5 Cgrv Cgrv
8 18 15 11 5 NA, same as F7 NA, same as F7
9 NA NA NA NA None in Cgrv None in Cgrv

10 25 21 11 21 Chase Chase

F0 poor in analysis, estimated in modeling
F3 1 value = 43k, used 30k
F4 not enough data
F6 avg = 33k, used 30k
F8, 10 not enough data
F9 Not present

 
Wreford and Council Grove Group – Porosity variograms

General Rules:

1. Horizontal major axes are average for either the Chase or Wolfcamp (Chase & Council 
Grove), except F0-2

2. Range for F0-2 are proportionately larger than for facies

3. For lithofacies 3-10, minor axis is 5/6th of major (as in Geomod3).  Seemed to work fine in 
Geomod3.

4. Azimuth is 11 degrees, same as in Geomod3.  This is approximate regional strike.

5. Vertical ranges are average for either the Chase or Wolfcamp (Chase & Council Grove).

6. Used shorter vertical ranges for facies that are out of place for the zone (5 feet)

7. Nugget = 0 and Sill = 1

Wreford and Council Grove

Facies
Major (k-

ft)
Minor 
(k-ft) Az

Vertical 
(ft) HZ VERT

0 42 42 15 Poor* Cgrv, NA in chase
1 35 35 12 Poor* Cgrv
2 35 35 9 Poor* Wolfcamp
3 32 27 11 16 Wolfcamp Wolfcamp
4 32 27 11 16 NA, used F3 NA, used F4
5 36 30 11 17 Cgrv, NA in chase Cgrv
6 27 23 11 14 Cgrv, NA in chase Cgrv
7 34 28 11 14 Cgrv, NA in chase Cgrv
8 34 28 11 14 NA, used F7 NA, used F7
9 NA NA NA NA NA Not in Cgrv
10 37 31 11 15 Chase Reduced

Rationale

 
Table 6.4.  Variograms ranges used in modeling lithofacies and porosity in the Wreford 
and Council Grove Group. Top is a summary table showing the mean value for 
horizontal and vertical variogram ranges by lithofacies, the stratigraphic interval from 
which the mean was calculated, and rules employed to develop the table.  A similar table 
for porosity variogram ranges is shown at the bottom. 
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Height 0.5 feet 0.5 feet Variable* Variable*
Source Actual NNet Predicted Upscaled Modeled (SIS)

Code Lithofacies Training Node Wells Node Wells All cells
0 Cont SS 3.8% 2.4% 1.4% 1.8%
1 Cont Crs Slt 21.0% 18.6% 15.0% 14.6%
2 Cont Fn Slt 11.2% 8.9% 7.7% 7.8%
3 Mar Slt 7.6% 9.6% 9.7% 9.9%
4 Mdst 6.1% 1.6% 1.3% 1.6%
5 Wkst 13.4% 19.7% 22.2% 24.5%
6 Vf-fxln Dol 3.4% 3.5% 3.5% 3.6%
7 Pkst-Grnst 18.2% 22.1% 24.7% 23.9%
8 PA Baff 0.8% 0.6% 0.7% 0.7%
9 F-mxln Dol 7.3% 6.6% 6.9% 4.7%

10 MM SS 7.0% 6.4% 6.9% 7.0%

Count (N) 13,512 1,383,653 211,720 108,064,831

* Model layer  h. Average of mean h = 3.3 feet.  Range of mean h = 1.9 to 
5.2 feet. Lithofacies 0-2 tend to be in thicker layers.  

Table 6.5. Relative distribution of 11 lithofacies in core, node wells, and cellular model.  
Core-defined lithofacies for 28 wells were used in neural network “Training” for 
lithofacies prediction in 1600 “Node Wells.”  Half-ft (0.15 m) lithofacies in node wells 
were upscaled to model layer thickness (Variable Upscaled).  Sequential indicator 
simulation (SIS) was utilized to populate the cellular model (All Cells) between the node 
wells. 
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Figure 6.1. Workflow for field-scale Hugoton model.  Workflow can be divided into three 
broad tasks: 1) gather and qualify data; 2) process data to provide basic geomodel input 
files (Develop/ Define/ Properties/ Algorithms); and 3) build the geomodel.  The figure 
suggests the process is linear, while in reality, there are more feedback loops, multiple 
iterations at sub-task level, and testing and validation at smaller scales. 
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Figure 6.2. Formation- and 
member-level stratigraphy 
correlated to wireline well log in the 
Flower A-1 well, Stevens County, 
Kansas. Commonly used 
formation/member letter-number 
combinations are shown for the 
Council Grove.  Twelve of the 13 
marine-continental (carbonate-
siliciclastic) sedimentary cycles that 
are gas productive are shown 
(Grenola Limestone, C_LM is not 
logged).  Stratigraphic names that 
include “Limestone” are marine 
half-cycles, that when combined 
with an adjacent continental half-
cycle intervals with stratigraphic 
names that include “Shale,” form a 
complete cycle. Color-coded 
lithofacies are derived from core. 
Three were deposited in a 
continental setting, L0- sandstone, 
L1- coarse siltstone, and L2- shaly 
siltstone, and eight in a marine 
environment, L3- siltstone, L4- 
carbonate mudstone, L5- 
wackestone, L6- very fine-
crystalline dolomite, L7- packstone-
grainstone, L8- phylloid algal 
bafflestone, L9- fine-medium 
crystalline moldic dolomite, and 
L10- sandstone. Wireline log 
abbreviations are caliper (CALI), 
gamma ray (GR), corrected 
porosity (PHI_GM3), photoelectric 
effect (PEF), density porosity 
(DPHI), neutron porosity (NPHI), 
core permeability (K_MAX, and 
core porosity (CORE_POR). 
Logged interval is 520 ft (160 m). 
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Figure 6.3.  (A) Map illustrating location of 1600 node wells used for the static model 
construction. Fourteen of the wells have core-defined lithofacies (circled) and the 
balance have lithofacies predicted by neural networks.  The 1600 are a mix of Council 
Grove (1256) and Chase (1314) wells with lithofacies defined by neural net (1209 of the 
1600 have both Council Grove and Chase lithofacies).  Only wells with lithofacies 
defined at least to the top of the Fort Riley (Chase) or the Florena Shale, B5_SH 
(Council Grove) were considered. (B) Map showing 8850 wells with formation-member 
level tops used for building the structural and stratigraphic framework for the Hugoton 
geologic model. 
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Figure 6.4. Schematic representation of single hidden-layer neural network used to 
predict lithofacies from wireline logs and geologic constraining variables. Inputs two 
geologic constraining variables (MnM – depositional environment indicator; RelPos – 
relative position in stratigraphic interval); and array of nuclear and electrical wireline log 
curves: gamma ray, (GR); logarithm of deep induction log (LogILD); average of neutron 
and density porosity (ΦN+ΦD)/2); difference between neutron and density porosity (ΦN-
ΦD); and photoelectric effect (PE). Outputs are lithofacies occurrence probabilities. 
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Figure 6.5. Comparison of predicted lithofacies versus core-defined lithofacies.  
Illustrated vertical plots of lithofacies membership probabilities, predicted discrete 
lithofacies (most probable), and lithofacies in core at the half-ft scale for the Chase and 
Council Grove from two separate wells in the training set (Youngren and Stuart, 
respectively). Neural networks were those utilized in estimating lithofacies in node wells 
(trained on all wells).  Probabilities were not used as an input for modeling, but they do 
illuminate some of the misallocations (actual lithofacies is often in “second place”).   
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Figure 6.6. Distribution of Hugoton cores (continuous) for which lithofacies were defined 
at half-ft (0.15 m) intervals.    
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Figure 6.7. Example results for cross-validation analysis to determine optimal values of 
neural network size (number of hidden-layer nodes) and damping parameter.  Results 
shown are the median over eight Council Grove wells with core-defined lithofacies and 
wireline photoelectric curve. The procedure was to perform five trials per well: leave out 
each well in turn, train on the other 7 wells, and predict on the subject well.  Median 
average misallocation cost versus damping parameter and network size for all wells 
were then plotted.  A network size of 20 hidden layer nodes and a damping parameter of 
1.0 were chosen. 
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Figure 6.8.  Empirical variograms (points) and fitted exponential models (lines) in the 
vertical direction for occurrence of facies 5 in all six submodels. 

  
Figure 6.9.  Empirical variograms (points) and fitted exponential models (lines) in the 
horizontal direction for occurrence of facies 5 in all six submodels. 
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Figure 6.10.  Lithofacies in stratigraphic cross sections across the Hugoton shelf (A) for 
the Chase (B) and Council Grove (C).  Cross sections are 10-15 degrees from being dip 
sections and are hung on the top of the Chase (B) and the Council Grove (C).  Some 
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key observations can be made: 1) In both the Chase and Council Grove, continental 
half-cycles (yellow-orange to red lithofacies) are thickest at the west field margin and thin 
basinward (southeasterly).  The pattern for the marine half-cycles is the opposite and, 
somewhat reciprocal, relationship with the continental half-cycles.  2) Back-stepping 
pattern in lithofacies distribution from one marine cycle to the next in the Chase. 3) 
Three Council Grove marine half-cycles “pinch out” near the west field margin, marking a 
paleo-shoreline that appears to then move northwesterly (landward) upsection.  4) Trend 
in carbonate rock texture from mud dominated (landward) to grain dominated 
(basinward), especially in the Council Grove. Large-scale sedimentation patterns and 
distribution of resultant lithofacies (at the cycle scale) are largely a function of the 
position on the shelf and reflect the interaction of shelf geometry, sea level, and possibly, 
the proximity to siliciclastic sources.  Lithofacies distribution and cycle-stacking patterns 
at larger scales may be a function of higher-order cyclicity and a shift from icehouse to 
green house conditions (upward) during the Lower Permian. (Model version: Geomod3) 
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Figure 6.11.  Stratigraphic cross section fence diagrams of the entire Hugoton cellular 
lithofacies model. View is from the southeast; datum is top of Chase and top of Council 
Grove; line spacing is 25 mi (40 km); vertical exaggeration = 200x.  Continental 
siltstones (red and orange) separate the marine carbonate half-cycles, the main pay 
zones (cooler colors) prevail in the northwest, updip, landward portion of the model, 
while the marine carbonate dominates downdip (basinward). Both continental (yellow-
orange) and marine sandstone (yellow) are most abundant landward.   
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Figure 6.12. Maps showing lithofacies distribution of selected lithofacies.  Illustrated are 
map views of “connected volumes” generated in Schlumberger’s PetrelTM modeling 
application.  Connected volumes are collections of touching cells in the cellular model 
having common properties and, for this model, help to demonstrate the remarkable 
lateral continuity of flow units within the Wolfcamp.  (A) Thirty largest connected volumes 
in the Crouse Limestone (B1_LM) packstone, packstone-grainstone (L7, blue) and fine-
crystalline dolomite (L6, pink) having porosity > 8%.  (B) Fifteen largest connected 
volumes in the Speiser Shale (A1_SH) continental sandstone (L0) with porosity > 12%.  
(C) Twenty largest connected volumes of marine sandstone (L10) having porosity > 
15%.  (D) Top 20 connected volumes for Krider packstone, packstone-grainstone (L7, 
blue) and coarse-crystalline dolomite (L9, purple) having porosity > 16%.  (E) Enlarged 
area of D.  (F) Same as E except for porosity > 18%.  Grant and Stevens counties are 
outlined in green for reference in D through E.  (Model version: Geomod 3) 
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Figure 6.14.  Distribution of marine sandstone (L10) and very fine-crystalline dolomite 
lithofacies (L6) in the Grenola (C_LM) of the Council Grove.  Illustrated are 2-D map 
views of the 15 largest connected 3-D volumes from the Hugoton cellular geo-model for 
L10 and L6 cells having >15% porosity.  Marine sandstone is the productive lithofacies 
in the southwest portion of the model where this Council Grove zone has a distinctly 
different (Lower) FWL than Hugoton reservoir system (Model version Geomod 4). 
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Figure 6.16. Continental very-fine-grained sandstone  
(L0) connected volumes (CVs) derived from cellular 
geomodel.  Illustrated are 21 largest CVs for the 
combined A1_SH, B1_SH, and B2_SH; 14 largest 
CV's for B3_SH and B4_SH, combined; and 14 
largest CV’s for B5_SH and C_SH, combined. Data in 
fringe areas, extreme northwest and southeast 
corners in particular, are less reliable due to 
sparseness and may be artifacts of the stochastic 
modeling process.  (Model version Geomod 4) 

 6- 44



 
 
Figure 6.17.  Marine fine-grained sandstone  (L10) connected volumes (CVs) in the 
upper Chase, derived from cellular geomodel. Illustrated are the 15 largest connected 
volumes for the lithofacies cells having >16% porosity for the Krider, Winfield, and 
Towanda.  A 14% porosity minimum was chosen for the Herington. Sandstone is 
prevalent through the entire Herington interval to the northwest, while it is mainly 
restricted to the upper portion of the Winfield except to the west (entire interval) and 
where otherwise noted. In the Towanda, sandstone tends to be distributed throughout 
the entire interval where it does occur, except where noted. 
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Figure 6.18. 3-D view of intersecting cross sections of Herington, Krider, and Odell 
intervals (upper Chase) and Krider connected volumes (CV’s).   CV’s are for medium 
crystalline moldic dolomite (L9) and packstone (L7) having greater than 18% porosity 
(same as in Figure 6.12F).  Cross sections’ orientations are shown in the inset map. The 
main geobody (CV’s) shown is an ooid-bioclast shoal defined in core in the Flower A1 
core, Stevens County, Kansas.  The shoal facies changes updip to the north to 
wackestone (L5) and packstone (L7), and to the west to L7, of poorer reservoir quality.  
(Model version: Geomd 3) 
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Figure 6.19.  Connected volumes and 3-D view of Cottonwood (B5_LM).  (A) Twenty 
largest CV’s for lithofacies very fine-crystalline dolomite (L6), packstone-grainstone (L7), 
and phylloid algal bafflestone (L8) having porosity > 14%.  (B) Enlarged portion of (A).  
(C) Twenty largest CV’s of L8, alone, having porosity > 14%. (D) 3-D view of a portion of 
the cellular model restricted to the Cottonwood.  Cross section is oriented south-north 
and passes through a well with core, the Churchman-Bible, location shown in (B).  
Lithofacies blocked to node wells are also shown at all node wells in the area.  What 
appear as a patchwork of lithofacies in the 2-D map views of 3-D CV’s is actually 
overlapping discrete geobodies of three lithofacies. 
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Figure 6.20.  Property distribution in cellular Hugoton model in cross section.  (A) 
Location of cross sections. (B) Chase group stratigraphic cross-section (datum is top of 
Chase).  Horizontal permeability is shown in west-east section and porosity (0-30%, 
yellow is 22%) is in the north-south section. (C) Chase Group through Easly Creek Shale 
(B2_SH, Council Grove) water saturation.  Free water level is the base of the cross-
section on the west and east side and the base of the Easly Creek (B2_SH) in the 
middle where the FWL is lower in the stratigraphic column (not able to display all models 
simultaneously).  FWL crosses stratigraphic boundaries in both updip and downdip 
positions.  Highest permeability (Kxy) and porosity (Phi), and lowest water saturation 
(Sw) are found in marine carbonates and sandstones.  Continental siltstones separating 
the marine carbonates are the intervals with Kxy and Phi, and higher Sw. (Model 
version: Geomod 3) 
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Figure 6.21.  Empirical variograms (points) and fitted exponential models (lines) in the 
vertical direction for porosity in facies 5 in all six submodels. 

 
Figure 6.22.  Empirical variograms (points) and fitted exponential models (lines) in the 
horizontal direction for porosity in facies 5 in all six submodels. 
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Figure 6.23. Lithofacies and layers for Flower A-1 well. Initial 998 half-ft layers were 
upscaled to 209 layers ranging from 2 ft to 4 ft thick. Geomodel permeability was 
calculated for the average porosity of the each of the 209 layers and the principal 
lithofacies. The 209 layers were upscaled to 25 zones for reservoir simulation (Chapter 
9).
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Figure 6.24. Crossplot of upscaled layer permeability versus upscaled half-ft bed 
permeability for 209 layers in the Flower A-1 well. Layer permeabilities were calculated 
from average layer porosity and lithofacies. Upscaled half-foot bed permeabilities 
represent arithmetic average of permeability for all half-foot beds within the layer. 
Differences between the upscaling methods result from the presence of thin, higher-
permeability intervals in layers and differences in averaging porosity and permeability. 
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Figure 6.25.  Frequency distribution of ratio of layer permeability (kavg-layer) to bed 
permeability (kavg-bed) showing ~75% of layers exhibited permeabilities with 40% of half-ft 
bed average permeability. The ratio is skewed to lower values as discussed in text. 

 6- 52



0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

1E-05 1E-04 0.001 0.01 0.1 1 10 100 1000

Upscaled Half-ft Bed Permeability (md)

La
ye

r-
 &

 T
en

so
r-

U
ps

ca
le

d 
Pe

rm
ea

bi
lty

 
(m

d)
Tensor
Arithmetic-Layer

Figure 6.26.  Crossplot of layer- and PSK-solver tensor-upscaled zone permeabilities 
versus half-ft bed upscaled zone permeabilities. This figures shows that both layer- and 
tensor-upscaled zone permeabilities agree with bed permeabilities with 80+30% except 
for a few significant outliers. The five zone exhibiting significantly higher bed 
permeabilities all have thin, high-permeability beds in one or two layers. 
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