Horizontal Drilling – Technology Review, Current Applications, and It's Future in Developing Kansas' Petroleum Resources

W. Lynn Watney Kansas Geological Survey Lawrence, KS 66047 Iwatney@kgs.ku.edu

Outline

- 1. Types of horizontal wells
- 2. Basic engineering and geology that define drainage radius in horizontal wells, design, and evaluation
- Statistics on current horizontal drilling in Kansas and types of reservoirs being drilled with laterals
- 4. Case study in Kansas New lateral in Hunton dolomite, Unger Field, Marion County
- 5. Expectations for horizontal drilling in the future

1. Types of horizontal wells

History of Horizontal Wells

- Short Radius
- Medium radius, downhole motors, 1985
- Re-entry drilling, 1995
- Coil tubing drilling underbalanced
- Rotary steerable system
- Fracture stimulation of horizontal wells

Extended Reach – Option 1 Water-Jetted Laterals

Comparing Radial Drilling Penetration vs. Conventional Perforation

Radcan Energy Services, Inc.

Extended Reach – Option 2 **Coil-tubing conveyed horizontal lateral** --First Highly Efficient Hybrid CT Rig

Built and Operating on U.S. Soil

About 300,000 feet of hole in 7 months Niobrara Chalk. NW Kansas Photo courtesy Tom Gipson, Advanced Drilling Technologies, LLC

Extended Reach – Option 3 Lateral Drilling with Conventional Tools

- Minimal technical risk mature technology used world wide
 - Tight directional control
 - Unlimited lateral length to drain multiple karst compartments

Cost-effective in mature field environment

- Relative ease to contract conventional rigs low mobilization costs
- Easy to get directional tools, drillers, and, tool push logging tools from OK
- Highest operator comfort least steep learning curve
- Post-drilling tool-push logging helps quantify production potential of the horizontal well and assess level of success

Horizontal Drilling in Kansas Definitions & Terms

Common terms used to describe horizontal wells

VERTICAL PROFILE: 332 NW

Horizontal Well Planning

Measurement While Drilling (MWD)

Halliburton GABI[™] Sensor - Gamma/At-Bit Inclination Azimuthal gamma ray – detect and avoid shale roof rock at top of the oil reservoir

Completion of Horizontal Wells

- Open hole
- Slotted liners
- Case and perforate to isolate oil and gas bearing intervals
- Install sensor and valves in multilaterals to control flow as laterals water out

FLOW

UNDULATING WELLBORE

- Acidizing
- Fracture stimulation

Lateral drilled in Chester sandstone most recently released report

CONSERVATION DIVISION WICHITA, KD

Multilaterals with conventional horizontal drilling technology

Example of Complex Laterals

J. Rush, KGS

Idd El Shargi, J. Rush -KGS

Idd El Shargi, J. Rush -KGS

Idd El Shargi, J. Rush -KGS

2) Basic engineering and geology that define drainage radius in horizontal wells, design, and evaluation

Productivity Improvement Factor

Distribution of Productivity in 96 horizontal wells

Joshi Technologies International, Inc.

Reservoir with Uniform Horizontal Permeability (ky/k_x = 1)

Joshi Technologies International, Inc.

Models used to predict recovery of a horizontal well

Ness City North Cellular Models

Simulation modeling of drainage and oil recovery from horizontal well -- Ness City North Field

Ness City North Horizontal Infill Well – Production Potential, Drainage & Interference on Existing Wells

Ummel 1 (U1)	- Prod Loss	(Interferrence)
		h la an an l

	Ummel 1	Ummel 1		
	Cum Oil, BO	Cum Oil, BO	Ummel 1	
	No Infill	Infill E-W	Prod loss, BO	
Jan-2003	220226			
Jan-2006	226409	224401	2008	
Jan-2008	229907	226572	3335	
Jan-2013	237034	230903	6131	

	Pf2A-24	Pf2A-24	
	Cum Oil, BO	Cum Oil, BO	Pf2A-24
	No Infill	Infill E-W	Prod loss, BO
Jan-2003	28,362		
Jan-2006	53,181	42,952	10,229
Jan-2008	64,475	47,448	17,027
Jan-2013	83,750	53,537	30,213

Production Gain from Infill EW (Infill)

Year end	Cum Oil, BO	Cum Wtr, BW
2003	22,237	320,335
2004	34,569	627,966
2006	50,137	1,226,540
2008	59,675	1,798,090
2013	71,272	2,847,120

3. Statistics on current horizontal drilling and types of reservoirs being drilled with laterals

U.S. Horizontal Completions - State Summary

U.S. HORIZONTAL COMPLETIONS – STATE ANNUAL SUMMARY							
							TOTAL
	Pre - 2005	2005	2006	2007	2008	2009	thru 12/31/09
Alaska	992	158	96	99	67	61	1,473
California	394	135	164	209	239	82	1,223
Montana	1,239	351	353	294	121	20	2,378
North Dakota	1,683	247	386	462	681	402	3,861
Oklahoma	1,183	551	717	775	1057	577	4,860
Texas	13,154	1,616	2,263	3,351	4,208	2,312	26,904
All others	4,255	426	619	1064	1619	1558	9,541
TOTAL US	22,900	3,484	4,598	6,254	7,992	5,012	50,240
Kansas	86	3	3	36	16	11	

JTI≢

HORIZONTAL WELLS IN KANSAS	October 2010		
Total	Wells with oil production		
producing oil wells	20		
Success rate (%)	8.4		
Niobrara chalk shallow gas	61	$\mathbf{\bullet}$	
Chase-Council Grove	10		
Lansing-Kansas City	2	0	
Cherokee CBM	15		
McLouth Sandstone	9	0	
Morrow-Chester	16	4	
Mississippian carbonates	22	6	
Viola	7	0	
Arbuckle	8	3	

403,430 bbls -- Best horizontal well drilled in Kansas to date – an infill well drilled in 1997 by Ensign Operating Company in Mississippian Warsaw Dolomite in Aldrich NE Field, Ness County -- 1400 ft lateral drilled and completed open hole by Halliburton services. initially, low productivity due to mud damage; cleaned up with acid for excellent well 4. Case studies in Kansas - Mississippian Warsaw dolomite reservoir in Ness County and Hunton dolomite in Marion County

Unger Field Marion County, Kansas

American Energies Corporation Alan DeGood

NW-SE Structural Cross Section #1

SP-Caliper-Microlog curves shown – SP depicted in color delimiting magnitude

Horizontal Drilling Plan – Unger Field, Marion **County**, Kansas

80

н je.

. .

Depth

Vertical

True

ij.

Vertical Section on 320.9 deg azimuth with reference 0.00 N, 0.00 E

Partners in Unger Field Drilling

FIG. 1

5. Expectations for horizontal drilling in the future

As set forth in Kansas Administrative Rule 82-3-102, field boundaries are determined by the Kansas Corporation Commission after considering the recommendations of the Conservation Division, Kansas Corporation Commission, and the Nomenclature Committee, Kansas Geological Society.

Oil and gas field

Producibility problems addressed with horizontal wells

- <u>Mature fields</u> often have high water cut, strong water drive
- <u>Current production practice</u> use conventional vertical wells
- Limited lateral drainage in vertical well
- <u>Significant variation in producibility</u> between adjacent wells
- <u>Residual pockets of oil possibly located in the interwell areas outside</u>
 the drainage reach of vertical wells
- Often <u>reservoirs are compartmentalized</u> (*karstification and subcropping strata*)
 - <u>Wells located in small compartment have short production life, uneconomic cumulative volumes</u>
 - Wells located (by chance) in <u>large compartments</u> long production life
- Effective pay zones in Kansas are thin (less than 20 ft)
- Limited resource-reach of operators financial and technical

Proposed solution – cost-effective extended reach horizontal lateral

- Has to be cost-effective drilling, logging, and completion
- Has to be have minimal technical risks for independent operators to be interested and apply for infill drilling
- Must have tight directional control to --
 - Reach and drain targeted pockets of remaining reserves in the inter well region
 - Have trajectory constrained within thin pay
- Would have significant added advantage, if one targeted well could drain multiple karst compartments
- Needs to produce economic volumes under constrained drawdown in order to reduce water cut
 - Low water cut helps keep oil relative permeability high in the near well region
 - Results in better sweep of residual oil