Pilot Scale CO$_2$ EOR in Mississippian Carbonate Reservoir at Wellington Field in South-Central Kansas

Yevhen Holubnyak, Willard Watney, Jason Rush, Mina Fazelalavi, and Dana Wreath

13th International Conference on Greenhouse Gas Control Technologies
Lausanne, Switzerland
November 16, 2016
Participants
CO₂ Sources Suitable for EOR

- Kansas holds more than 750 million barrels of technical CO₂-EOR potential and ~240-370M metric tons of CO₂ is required for recovery.
- Economic results based on Hall Gurney field suggest an after-tax project IRR of about 20%.
- Access to the significant volumes of ethanol-based CO₂ in Nebraska.
Potential Recoverable Resources: Formations of Interest
Potential Recoverable Resources: Mississippian Group

Mississippian Oil and Gas Production

Mississippian Lime Play

Oil Production since 1970
- Mississippian: 12%
- Arbuckle: 13%
- Simpson: 6%
- Viola: 4%
- Others: 18%
- Pennsylvanian: 47%

Mississippian Group

Mamaton: 190 MMBO (50-70 CO2 MMBO)
Morrow: 150 MMBO (50-70 CO2 MMBO)
Simpson: 250 MMBO (60-90 CO2 MMBO)
Viola: 370 MMBO (90-130 CO2 MMBO)
Mississippian: 980 MMBO (250-360 CO2 MMBO)
Lansing-Kansas City: 1,240 MMBO (310-430 CO2 MMBO)
Arbuckle: 2,290 MMBO (570-800 CO2 MMBO)
Wellington Field, South KS
Plan for CO$_2$ EOR Pilot

- Find, characterize, and prepare oil field
- Find CO$_2$ source
 - Initially, ethanol plant and multiple sources
- Develop strategy for resource recovery through reservoir modeling
 - Several revisions
- Obtain a permit and drill a new injection well
- Organize surface infrastructure and deliver CO$_2$
 - Truck delivery
- Inject \sim26,000\sim20,000 tones of CO$_2$ at 100-150 tones/day
- Monitor and manage CO$_2$ plume
- Vent produced CO$_2$
Reservoir Characterization

- Very old Neutron logs with or without resistivity logs for all wells
- 16 wells with complete suites of resistivity and porosity logs
- New wells drilled by KGS have a full set of modern logs
- Core is available from KGS #1-32
 - Porosity/permeability
 - Geochemistry
 - Geomechanical data
- 3D Seismic
- Formation fluids analysis
Injection Well Drilling and Coring

- Class II Well Permit
 - 30 days process
- ~100 ft of new core
- 70 ft of ~23% Sor
- 20% Phi
- 15-18 mD
Injection Well Logging

3763 (-2494 ss) -- Original O/W contact
Mina Fazelalvi, KGS

20 ft (6 m)

Average log calculated absolute permeability using NMR compared to whole core C/A
Well Tests

- Drill stem test
- Step rate test
- Interference test
Seismic Stratigraphy Using PSDM
Improved Geologic Model
Capillary Pressure and Relative Permeability
Fluid Properties

- CO₂ Miscibility pressure is ~1650 psi
- Oil API gravity is 30°
- Oil composition
- Water composition
- PVT
Reservoir Modeling

• Strategy for a flood
 – Monitoring optimization
 – Re-pressurization strategy for miscibility
 – CO_2 movement

• Economic forecast
 – Sweep efficiency
 – Oil production
 – CO_2 production
Forecasted CO₂ Movement in Reservoir

Forecasted Pore-Pressure Distribution at the Start of CO₂ Injection
Required miscibility pressure is ~1650
Waterflood Strategy after CO₂ Injection

![Graph showing oil production rate over time with two lines: one for 500 bbls/day and another for 850 bbls/day. The graph illustrates the impact of CO₂ injection on oil production rate.]
Operations: CO₂ Delivery and Surface Facilities
Fluid Monitoring

- Water chemistry
 - Alkalinity
 - pH
 - Cations/anions
 - Microbial

- Production history
 - Oil/water
 - CO₂ account
Geochemical Monitoring: Field Alkalinity Progression

3/23/2016

4/27/2016

6/23/2016 End of CO₂ injection

7/19/2016

High Alkalinity CO₂

Supercritical CO₂ / Small fault
Seismic Monitoring

Housing setup for Sercel (Mark Products) L-22D-3D sensors, ~5 ft below surface to minimize surface noise; installed below frost line in bedrock.
Incremental oil production (subtracted 9 bbls/day) recorded at a pilot area filed battery.
CO₂ production from all installed separators at producing wells and pilot area field battery. At the end of September, 2016, 3 months since CO₂ injection cessation, only ~12% of injected CO₂ was produced.
Summary

• Safe and efficient injection
 – No substantial deviations due to unforeseen circumstances (carbonate reservoir fracturing, temperature, pressure, etc.)

• Successful oil recovery

• Low CO$_2$ production/recovery
 – 13% of total injected CO$_2$ was lost to atmosphere since start of injection

• Manageable and conformable CO$_2$ plume
Acknowledgements & Disclaimer

Acknowledgements

- The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE-FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and administered by the Kansas Geological Survey/KUCR at the University of Kansas and funded by DOE/NETL and cost-sharing partners.

Disclaimer

- This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.