Modeling CO$_2$ Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate Regional CO$_2$ Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

Wrap-up presentation
DOE-NETL, Pittsburgh, PA, February 12, 2015

W. Lynn Watney and Jason Rush
Joint PIs
Kansas Geological Survey
Lawrence, Kansas 66047
lwatney@kgs.ku.edu

Award No. DE-FE0002056
Outline

• Overview/Statement of Work
• Experimental methods
• Results and discussion
• Lessons learned

Kansas with oil and gas fields

http://maps.kgs.ku.edu/co2/
Research collaboration in Kansas for CO$_2$-EOR and saline aquifer storage

SW Kansas CO$_2$-EOR Initiative

- Industry, academia, survey, state government
- Best practices, building on industry infrastructure and resources
- Industry -- Access to field and technical knowledge
- Donation of important 3D seismic data and field records
- Project supported Class VI application for CO$_2$ injection into Arbuckle at Wellington Field

52,000 metric ton (small scale) CO$_2$ injection test at Wellington

433,000 bbls equivalent (620 bbls/day)
Statement of Objectives & Outline to Presentation

A. Characterize the Ozark Plateau & Western Interior Plains Aquifer and petroleum system
 i. Encompassing Mississippian age sandstones and carbonates and Cambro-Ordovician Arbuckle Group carbonate and minor basal sandstone

B. Establish unified and integrated model of aquifer/petroleum system
 i. Using geology, geophysics/potential fields, and remote sensing spanning 33 counties in south-central Kansas

C. Model 5 oil fields for CO\textsubscript{2}-EOR and use information to characterize and model CO\textsubscript{2} storage in the Arbuckle saline aquifer:
 i. Wellington Field, Sumner Co., KS
 ii. Cutter Field, Stevens Co., KS
 iii. Pleasant Prairie SE Field, Haskell Co., KS
 iv. Eubank Field, Haskell Co., KS
 v. Shuck Field, Seward Co., KS

D. Evaluate potential to employ large-scale commercial carbon storage in Kansas
 via CCUS and developing ownership with regional petroleum industry
 i. Mississippian oil and gas reservoirs above and Arbuckle saline aquifer below in existing fields and similar structures
 ii. Identified and modeled 10 sites for commercial scale CO\textsubscript{2} – analogous to calibration sites; suitable candidates for Class VI permit

A. Risk analysis toward establishing storage capacity
 i. Wellbore, injection, caprock, faults, and USDW/usable aquifers in Kansas

B. Address program goals
 i. Develop technologies that will support industries’ ability to predict CO\textsubscript{2} storage capacity in geologic formations to within ±30 percent.
 ii. Evaluate best practices to minimize risk and maximize CO\textsubscript{2} storage.
A. Characterize the Ozark Plateau/Western Interior Plains Aquifer and Petroleum System encompassing Mississippian sandstones and carbonates and Cambro-Ordovician Arbuckle Group carbonate and minor sandstone (Predict CO$_2$ storage within ±30 percent)

1. Type wells – scan, digitize logs and samples descriptions, establish standardized correlations
2. Created **structural and stratigraphic maps and cross sections** to evaluate storage and risk
3. Developed and use **Java tools and interactive map** to integrate data, make publicly accessible
4. **Develop regional Petrel project** to access, process, and display digital well logs, basic cross sections, stratigraphic, geophysical, and remotely-sensed lineaments
5. Process and interpret **regional gravity and magnetic data**
6. Interpret regional **remote sensing** information for lineaments and spatial anomalies
7. Analyze **regional fluid chemistry and establish hydrostratigraphic units** in Arbuckle Group saline aquifer
8. **Evaluate fracture and fault distribution, seal integrity, and reservoir characterization**
 1. Utilize donated 3D seismic (130 mi2) and that acquired (~20 mi2) at Wellington and Cutter fields
9. **Develop regional simulation, “Mega Model”, estimating carbon storage based on injectivity**
10. Evaluate **CO$_2$-EOR potential in Kansas and propose business model for use of anthropogenic CO$_2$** with industry partners, KS Department of Commerce, and Governor’s office
11. **Map major sources and sinks for CO$_2$**
12. **Evaluate risk**
Workflow

Select and digitize key wells

Core, log & well test analysis

Seismic analysis

Mapper & Java tools

Regional study area outline (65,000 km²)

Wellington Field

Regional “Mega Model” simulation

Geomodels
Maximize new information gained to quantify key variables in CO₂ injection and storage

CO₂ well inventory
- Pre-Cambrian test
- Modern log suite inventory: 77
- Super Type Well inventory: 130
- Type Well inventory: 737

- Scanned images of 90,000 shallower wells

Digital Type logs and correlation
- Regional stratigraphic correlation
- KGS & Bittersweet team

3D view of stratigraphic tops
- Regional Petrel database
- Most surface >10,000 wells

3D view of 18 structure surfaces
- 2500 x 2500 ft grids
- Convergent gridding algorithm

T. Bidgoli and M. Nguyen, KGS
Regional stratigraphic database archived in dedicated Petrel workstation to facilitate continued analysis.

W-E Cross section across southern Kansas illustrating surface in Petrel database of Phanerozoic stratigraphy.

10x vertical exaggeration.

T. Bidgoli & M. Nguyen

High Plains/Ogallala Aquifer

Wellington Field

Cutter Field

Sumner Group with Hutchinson Salt (halite)

U & M Mississippian

Arbuckle

Lower Mississippian-Upper Devonian primary caprock

1. Present-day surface
2. High Plains base (Neogene)
3. Top Dakota (Cretaceous)
4. Base Dakota (Cretaceous)
5. Blaine Formation (Permian)
6. Cedar Hills Formations (Permian)
7. Top Stone Corral Formation (Permian)
8. Hutchinson Salt (Permian)
9. Top Chase Group (Permian)
10. Root Shale (Upper Pennsylvanian)
11. Heebner Shale (Upper Pennsylvanian)
12. Stark Shale (Upper Pennsylvanian)
13. Top Cherokee Group (Mid. Pennsylvanian)
14. Top Mississippian (Upper Mississippian)
15. Top Pierson Formation (Mid. Mississippian)
16. Top Viola Limestone (Middle Ordovician)
17. Top Simpson Group (Middle Ordovician)
18. Top Arbuckle (Lower Ordovician)
B. Model carbon dioxide injection in Arbuckle Group saline aquifer and the overlying Mississippian reservoir at Wellington Field (Sumner County, Kansas) *(Eastern Calibration site)*

1. Drill, core (1528 ft), test #1-32 and drill and test #1-28, both ~5200’ basement tests; including step-rate test between wells in proposed Arbuckle injection zone

2. Acquire, process, interpret 12 mi² of multicomponent 3D seismic to interpolate Φ-k distribution, resolve structure, and evaluate seals

3. Obtain geochemical, isotopic, and microbial analysis of brines and rock to characterize hydrostratigraphy and evaluate and model reactions with CO$_2$

4. Establish diagenetic history/paragenesis of the regional aquifer/petroleum system using petrography, geochemical, and fluid inclusions

5. Use Petrel and CMG to build integrated depth-migrated and well based geo-engineering models

6. Evaluate at risk wells and estimate CO$_2$ leakage and effects
Extensive, integrated characterization of the Arbuckle saline aquifer at eastern calibration site (Wellington field)

Step-rate test pressure-time plot, #1-32 & #2-18

Depth vs. Φ & k, fracture features plot from 480 whole core samples

Depth (horizontal axis) vs. whole core analysis. 4.5 orders of magnitude variation in permeability compared to porosity.

Kmax Ranges from 0.01 to 425 md (whole core)

Porosity – predominately between 1-10%

Lithofacies:
- Shale = 1
- Mudstone = 2
- Packstone = 3
- Grainstone = 4
- Incipient breccia = 5
- Breccia = 6
- Sandstone = 7
- Microbialite = 8

Fracture (I-5, highest: 5, zone)

KGS #1-32 whole core analysis compared to core derived lithofacies, N = 480

Oxygen and hydrogen isotopes \(\rightarrow\) Lower and Upper Arbuckle at Wellington are not in hydraulic communication

12 mi² Wellington multi-component 3D

Scheffer, KGS/KU

Paragon Geophysical, Wichita

Weatherford

Oxygen and Hydrogen Isotopes of brines from DST and perf & swabbing

Upper Arbuckle – distinct

Lower Arbuckle injection interval

Upper Arbuckle and Miss.

Scheffer, KGS/KU

Water distinct from upper Arbuckle and Miss.

Lower intervals are also geochemically homogeneous.
Gamma ray
Halliburton derived effective porosity from Nuclear Magnetic Resonance (NMR)
Coates Permeability from NMR tool
Microresistivity imaging log (MRIL)

Porous crackle breccia common in injection zone (dissolved evaporites)

- Gamma ray
- Halliburton derived effective porosity from Nuclear Magnetic Resonance (NMR)
- Coates Permeability from NMR tool
- Microresistivity imaging log (MRIL)

J. Rush, KGS

Aquitard
Top Arbuckle (matrix and karst)
Injection zone

GR Φ_e Perm

1268 m

4995 ft (1522 m)

5029 ft (1530 m)

Perforation Interval for step rate test

30 m

Perm Φ_e

diameter = 3 inch

HALLIBURTON Petrel
Improved permeability estimation in Wellington KGS #1-32 and correlation to Wellington KGS #1-28

- Micro, meso, and mega groups defined from core & log analyses
- Derived FZI (flow zone indicator) from core and irreducible water saturation from NMR log
- Permeability computed from FZI value (Fazelalavi method)

Black points = core measured permeability
Simulations of CO₂ injection at Wellington Field into high permeability hydrostratigraphic unit in lower Arbuckle

Well KGS 1-28
40 kt of CO₂/9 months

Top of Arbuckle
4168 ft

Baffle Zone

Perforation Zone
4910-5050 ft, 140 ft

Bottom of Arbuckle
5160 ft
Vertical pressure distribution at maximum stress (just before the small scale 40k tonne injection stops)
C. Evaluate CO$_2$ sequestration potential in oil four fields in southwestern Kansas (Western calibration site)

1. Drill and complete 7500 ft basement test in Cutter Field, Stevens Co., KS using bid process and regional service companies
 - Core (1216 ft net) from base Pennsylvanian to basement
 - Run multiple interval well tests including perf and swab
 - Acquire, process, and interpret 10 mi2 of multicomponent 3D seismic

2. Obtain, reprocess, and interpret 130 mi2 of 3D seismic through industry consortium – SW Kansas CO$_2$ Initiative

3. Analyze fluids and rock from Cutter KGS #1

4. Simulate CO$_2$-EOR @ 4 fields
 - Cutter, South Pleasant Prairie, Eubanks North, and Shuck fields
 - Optimize CO2 storage
Cutter Field core was cored, logged, and tested in manner analogous to Wellington Field

Multiple oil shows in Arbuckle core

Lower Gasconade Dolomite 7420-50 ft
Vuggy pores from image log

Lower Gasconade Dolomite, 7427 ft

Gray-brown, packstone with quartz sandstone, cm sized vugs that are interconnected cut across core, saddle dolomite, very porous breccia

Lower Gasconade Dolomite, 74233 ft

dolomitic packstone-grainstone, medium to coarsegrained vugs, occ. diagonal fractures
1. Cutter brines appear to be mixed.

2. Wellington shows distinct groups in upper and lower Arbuckle. Cutter waters are closer to the GMWL, and indicates more evaporation.

3. Cl/Br ratios (below) show no vertically separated units within Cutter, which is in contrast with Wellington.

Campbell and Datta, KSU
D. Evaluate potential to employ large-scale commercial carbon storage

- Major oil and gas reservoirs as candidates for CO₂-EOR & existing CO₂ sources in Kansas
- Regional study area of the Arbuckle saline aquifer (yellow box)

<table>
<thead>
<tr>
<th>Arambelle Fields</th>
<th>Lansing-KC Fields</th>
<th>Mississippian Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1,000,000 bbls</td>
<td>0 - 1,000,000 bbls</td>
<td>0 - 1,000,000 bbls</td>
</tr>
<tr>
<td>1,000,000 - 10,000,000</td>
<td>1,000,000 - 10,000,000</td>
<td>1,000,000 - 10,000,000</td>
</tr>
<tr>
<td>10,000,000 - 100,000,000</td>
<td>10,000,000 - 100,000,000</td>
<td>10,000,000 - 100,000,000</td>
</tr>
</tbody>
</table>

Source: USGS, Kansas Geological Survey, DASC
Neural network (NN) prediction of Arbuckle permeability from logs
1. GR (Gamma-ray, API units)

The CGR (K+Th) shows good distinction between more permeable grainstones and less permeable mudstones.

Complication: Standard gamma-ray logs include uranium, which may bias grainstones towards mudstones.
2. PHIt
(volumetric porosity\% from density & neutron logs)

There must be some relationship between porosity and permeability

...Surely?

Doveton, KGS
3. PHIr (connected porosity estimated from resistivity log %)

From the first Archie equation for carbonates:

\[
F = \frac{R_o}{R_w} = \frac{1}{\Phi^2_R}
\]

where \(\Phi_R \) is the electrically connected porosity.

So,

\[
\Phi_R = \sqrt{\frac{R_w}{R_o}}
\]

Complication: \(R_w \) is significantly higher in the top of the Arbuckle than in the middle and this variability needs to be accommodated in the calculation of PHIr.

Doveton, KGS
West-East structural cross section showing permeability distribution in 16 Arbuckle flow units, southern Kansas on regional 2500 x 2500 ft grid.

Realizations of Horizontal Permeability, md
Based on neural net
Wellington and Cutter Fields

Williams, Gerlach, Fazelalavi, Holubnayk, Doveton, KS CO₂
Regional Sequestration Numerical Models

- **Max injection rate per well** = 5,900 tonnes/day
- **Limiting Injection Pressure** = 150 % of ambient pressure at site
- **CO₂ Trapping Processes Simulated:**
 - Structural, Hydrodynamic, Solubility, Residual, Mineral
- **Conservatively simulated as a closed system**

Mega Model 1
- 10 injection sites
- 50 years to 2065

Mega Model 2
- 10 injection sites of Mega Model 1 plus 103 uniformly distributed wells
- 150 years to 2165
Mega Model 1 delta pressure (PSI) at 50 yrs injection

10 injection wells
Maximum local pressure 450 psi
Mega Model 2 delta pressure (psi) at 50 years injection

- 103 injection wells
- Max pressure ~1025 psi

Contour Interval: 25 psi
Model 2

CO$_2$ as super critical gas in place after 150 yrs of injection

103 injection wells
4 billion tonnes injected in 150 years

Williams, Gerlach, Fazelalavi, Holubnayk, Doveton, KS CO$_2$
Mega Model 2 delta pressure at 150 years injection

103 injection wells
Maximum delta pressure ~1075 psi
-- simulation with a closed system

Contour Interval: 25 psi

Williams, Gerlach, Fazelalavi, Holubnayk, Doveton, KS CO₂
Mega Model 2 aquifer pressure

- Average aquifer pressure at datum depth of 5000 ft builds from 1968 psi to 2745 psi ($\Delta P = 777$ psi)
- 39.5% increase in pressure
- Conservatively simulated as a closed system

![Graph showing pressure changes over time with a peak at around 2600 psi and a slow dissipation rate of approximately 0.54 psi/ft max.]

Pressure dissipates slowly

~0.54 psi/ft max

Ave Datum Pres POVO SCTR (psi)

Time (Date)

2050 2100 2150 2200 2250 2300

1,800 2,000 2,200 2,400 2,600 2,800

Williams, Gerlach, Fazehalavi, Holubnayk, Doveton, KS CO$_2$
Mega Model 2 CO₂ injection

- CO₂ is injected for 150 years, 103 wells
- Conservatively simulated as a closed system
- CO₂ injection capability diminishes as aquifer pressure increases
 (5.2**9 SCFD CO₂ (306 MMT) down to 0.5**9 SCFD CO₂ [29 MMT])
- Total CO₂ injected 9x10¹² lbs → 4.02 billion tonnes

Williams, Gerlach, Fazelaevi, Holubnayk, Doveton, KS CO₂
Comparison of gas distribution at various volumes (Area 1 – Wellington Field)

Injection Total 5.68 MM Ton (50yr)

Injection Total 7.6 MM Ton (50yr)

Injection Total 13.4 MM Ton (50yr)

Injection Total 71.1 MM Ton (50yr)

Injection Total 79.2 MM Ton (100yr)

Injection Total 144.5 MM Ton (50yr)

Injection Total 165.4 MM Ton (50yr)

Injection Total 207.3 MM Ton (100yr)

$4 billion at $20/tonne
Area 1 (Wellington Field) – CO\textsubscript{2} gas saturation after 100 yrs

Maximum rate of injection and cumulative injection
8.7 up to 154 MMCF/D with 7.5 to 207 MM tonnes CO\textsubscript{2} injected (500 tonne to 9000 tonne/day)
via use of multiple and horizontal wells to maximize
CO₂ storage capacity estimate via DOE methodology

Deep Arbuckle Saline Formation (reported for NATCARB)

\[G_{CO₂} = A_t \ h_g \ \overline{Ø}_{tot} \ \rho \ E_{saline} \]

9-75 billion metric tons in Arbuckle only
(200+ years for all KS stationary CO₂ emissions)

Metric tons CO₂ per Grid Cell
10 km²
(3.8 mi²)

Gerlach and Bittersweet team
Thickness (ft) (top) & (P90) estimate of CO$_2$ storage (millions tonnes/10 km2 cell) (bottom) in southern Kansas

Arbuckle Isopachous map

Cutter KGS #1 Stevens Co. Well

Wellington KGS #1-32 Sumner Co.

P90 CO$_2$ Storage Capacity
Million tonnes/10 km2 grid

65,000 km2

0.769 tonne/m3

1 m3 = 6.29 bbls

8.179 bbl/tonne CO$_2$
E. Risk assessment

Freshwater aquifers in Kansas

- Dakota
- Glacial Drift
- High Plains/Ogallala
- Alluvial
- Ozark
- Wellington Cutter
Required increase in pore pressure (psi) for migration of brines from Arbuckle into freshwater aquifers

- Need to ensure these pressures are not exceeded if improperly abandoned wells or communicative faults are present within zone of influence.
• In-situ water levels lower by about 600 ft in SW Kansas due to heavier brines in the Arbuckle
• Low relief of fluid level compared to surface elevation → “underpressured”
Maximum allowable fracture-based increase in pore pressure

- Induced pore pressures should not exceed 90% of the “Fracture Gradient” in Kansas of ~ 0.75 psi/ft [EPA Class VI injection well requirement]
- Maximum pressure of Mega Model = 1075 psi after 150 years (0.61 psi/ft at 5000 ft)
F. Address program goals

- Develop technologies to support industries’ ability to predict CO$_2$ storage capacity in geologic formations to within ±30 percent.
 - Commercialization of CCUS
 - Web tools and interactive mapper to facilitate initial steps of commercial development
 - Keep database “evergreen” for use in refining models, problem solving, and collaboration with industry in keeping with mission of the KGS
 - Acknowledge DOE/NETL
Current Anthropogenic CO\textsubscript{2} sources and selected oil fields to initiate CO\textsubscript{2}-EOR in Kansas

Estimated 750 million barrels of incremental oil from CO\textsubscript{2}-EOR in Kansas

Also in collaboration with Midwest Governor’s Association & Clinton Foundation Climate Initiative
Southwest Kansas CO₂-EOR Initiative
Integrated Multi-Discipline Project for CO₂-EOR Evaluation

Geophysics:
structure, attributes, faults

Petrophysics:
Core K-Phi, corrected porosity, free water level, J-function

Geology:
Formation tops, sequence stratigraphy, core lithofacies, lithofacies prediction (NNet)

Engineering:
PVT and fluid analysis, recurrent histories, dynamic modeling

Dubois
Java Applets (available for standalone distribution)
-- primarily focused on archiving, analysis, and integrated display of digital well information; fluid production, well test analysis
-- public access to information obtained from study

http://www.kgs.ku.edu/Gemini/Tools/Tools.html

Next generation development of GEMINI (GeoEngineering Modeling through INternet Informatics)
Digital type logs archived as LAS 3.0 (ascii format) bundling digital wireline logs, samples, core, test data accessed and analyzed with Java apps

- Berexco Wellington KGS #1-32
- Example of Profile App showing default plot of information on LAS 3.0 file
- Access via interactive mapper or standalone application
Managing fluid disposal in a complex Midcontinent structural setting -- access to regional results via project’s interactive mapper

http://maps.kgs.ku.edu/co2/
Top Arbuckle structure with overlays –
Class II disposal wells, oil fields, mapped faults, earthquakes,
eastern portion of study area

Total annual brine disposal:
Class I in Kansas: 95 million bbls (15 million tonnes)
Class II: 52 million bbls in Harper and Sumner County (8.3 million tonnes)

https://maps.kgs.ku.edu/co2/
Statement of Results -- Why they are important

a) CO₂ P10 & P90 storage using DOE recommended methodology provided 8.8 and 75.5 MMM tonnes capacity. First generation simulation of 150 yrs of CO₂ injection = ~4 MMM tonnes

b) Conservatively simulated in this initial regional model as a closed system

c) Wellington Field commercial scale CO₂ disposal 5.68 to 207.1 MM tonnes for 50 and 100 yr injection

d) Cores, logs, seismic, DST, geochemical and microbial analysis, and step-rate test at Wellington Field indicates that lower Arbuckle is a primary injection interval (~300 ft thick) overlain by widespread thick (400 ft) baffles/barriers in mid Arbuckle.

e) Thick (~120 ft) primary caprock in lower Mississippian augments the Chattanooga Shale in south-central Kansas.

f) Arbuckle saline aquifer is an open system in geologic time, but initially, conservatively modeled for storage as a closed system

g) Local and regional permeability barriers within internal flow units limit actual feasible injectivity and related storage during term of anticipated injection (100s of years).

h) Injection pressure of any fluid should be below parting pressure of rock, generally between hydrostatic and fracture gradient

i) Detection and delineation of faults is hampered by lack of extensive 3D seismic, decreasing throw of faults or drape over faults at shallow depths, few basement penetrations.

j) Fault properties include geometry, length, stress distribution, vulnerability to changes in pore pressure in contact with injected fluid or stress from weight transfer/stress without contact with faults

k) Inherited faults affecting Arbuckle and Mississippian include oblique-strike slip motion with diagnostic features noted across south-central Kansas.
Developing better ways to characterize sites and basins

- Outside of Class I UIC wells, information on Arbuckle disposal wells is limited to monthly injection information in paper format, limiting use in validation of models.

- **Seismic processing and interpretation** needs good velocity control for depth migration.

- **Essential parameters** -- coring of entire target zones to calibrate a comprehensive well log suite for pore network, minerals, stratigraphic analysis.

- **Inherit heterogeneity in carbonate aquifers requires characterization from pore to basin scale** -- establish net effective aquifer based on injectivity and mapping no flow zones (flow units).

- **Maximize use of key common logs** -- triple combo, microresistivity imaging log, dipole sonic for pore fabric, fracture network, and geomechanical properties; NMR if budget allows.

- **Extensive well testing integrated with other data** -- individual well tests - DST, perforation and swab and pressure buildup, cross well - step rate, interference tests.

- **Step rate test and interference tests** -- inexpensive and effective to obtain macroscale/interwell estimates of basic injectivity and lateral connectivity.
Developing better ways to characterize sites and basins

• Water analyses -- DST's and perf and swab to verify distinct hydrostratigraphic units
 – Vertical and lateral connectivity of the hydrostratigraphic units -- O, H isotopes, redox elements, and anions (Br, Cl, I ratios)
 – Phosphate and other nutrients respond to microbial population

• Begin with characterization of pores -- core/log calibration; whole core analysis in carbonates
 – Capillary pressure and NMR pore size distribution (ran NMR to 5 seconds to encompass larger vugs expected in the Arbuckle saline aquifer)
 – Use of common well logs suites to indicate pore type -- examine conductivity/low resistivity as indications of large connected pores and proxy for elevated (supercharged) permeability

• Sample logs – important to use a reliable set of cuttings descriptions to validate pore type, also use drill time and lost circulation to augment other analyses

• Use of integrative web apps to bring core-logs-water and core analyses
 – Well suited for collaborative sharing without special high end software
 – Display images of processed logs to emphasize differences
 – Solve for lithology and graphic displays on-the-fly
 – Annotate with consistent set of stratigraphic nomenclature
What made accurate characterization difficult?

• Commonly dispose of brine in the top of the Arbuckle along "Karst" so information not representative of the entire Arbuckle
• Old logs appeared to be an issue, but even cable tool sample logs proved to be useful to establish pore type and help calibrate nearby wireline log data; issue was much less control due to shallow depth of penetration of Arbuckle wells
• Lack of available regional seismic
• Lack of stress mapping and geomechanical information
• Lack of a clear structural model (kinematics) and appreciation for the effects of neotectonics
• Not routine to handle large regional simulations to determine storativity using flow unit approach
Where are the technological gaps that hindered characterization efforts? Are these gaps that have potential solutions through R&D efforts?

- **More efficient means to manage large regional datasets** –
 - Processing of well logs and sample data to build model comprised of hydrostratigraphic units;
 - Realizations of permeability and porosity applied to them and measures of goodness of fit;
 - Examining outliers of high and low permeability

- **Establishing a fracture/fault hierarchy and accompanying structures in 3D for the entire basin**
 - Discern timing and kinematics
 - Evaluate faults for leakage or barriers to flow
 - Establish local understanding of fault lengths/damage
 - Integrate earthquake mechanisms to further characterize fault behavior, critical stress, geomechanics, role of weight and pore pressure on potential fault movement

- **More extensive modeling of regional brine disposal data**
 - Mapping stress, understanding parting pressure, and fracture gradients in “underpressured” reservoir systems such as the Arbuckle in western Kansas

- **Basement analysis** – integration of extensive work on geochronology of basement terranes and integrating with gravity mag analysis and Phanerozoic history
Were there technologies/methodologies that were modified to fit their specific location?

- How were they modified – slow run of NMR to capture larger pores; non-trivial log analysis in recognition of range of pore types; characterization of microbes in dense brines complimented H/O stable isotopes to fingerprint brine systems; able to run many DST and perforation/swabbing runs to refine brine system; developed extensive web applications and interactive mapping system facilitated access and analysis of the project dataset; developed digital type-log system including means to modify and refine stratigraphic nomenclature

- What were the specific location conditions that were addressed through this/these modification(s)? Used an integrated approach to verify and quantify properties of vuggy, brecciated, and fractured carbonate intervals

- Are those modifications able to be applied to other locations with similar conditions? YES!

- Please explain – Carbonates are complex reservoirs and CO₂-EOR needs to move to the next generation to increase effectiveness of CO₂ (DOE-NETL initiative)
Would anything be done differently if could or if had no limits on time/funding?

- Incorporate all brine disposal data to help evaluate model parameters (*used only Class I well tests in the study to compare to injectivity estimated for nearby type wells*)
- Keep static and dynamic models “evergreen”
- Develop a more comprehensive digital surface to subsurface information system focused on stratigraphic, sedimentologic, petrophysical, geophysical, and engineering properties suited for use in static and dynamic models
• Would additional investigation in other areas of the storage area/basin have the potential to significantly change the findings?
 – Helpful to evaluate and validate methodologies
 – Realizations of permeability need more calibration and testing

• Does the heterogeneous nature of the subsurface require more extensive characterization to achieve accurate results?
 – Yes, make more use of existing brine disposal data from Class I and Class II wells
 – Collaborate on larger basis with industry to examine 3D seismic to verify faults, karst, etc. while keeping data confidential (e.g., for examination of basement faults, slice out basement data)
 – Incorporate historical knowledge of basement maps, e.g., geochronologists, and integrate with mapping – NSF Earthscope, USGS (e.g. Resource assessment studies (Higley et al. for Anadarko Basin as collaborated with in this investigation)
 – Incorporate existing well data on fracture orientation and earthquake solutions to reveal more about local and subregional stress variations to evaluate critical stress of faults, establish patterns to stress – neotectonics and kinematics

• If so, could that be performed in a cost effective manner?
 – Yes
Best practices and lessons learned

• **Outline Best Practices and well recompletion plans for at-risk wells**
 – Utilize services of consultants who work with Class I permitting to sift through data to suite EPA
 – Predict to understand pressure history through simulation and stay below the critical pressures to part existing fractures and to prevent flow of brine into USDW

• **Outline Best practices and well completion plans for new CO$_2$ injector wells**
 – High quality casing to suite EPA, use CO$_2$ resistant cement, cement in multiple stages, run radial cement bond log, run MIT
 – as carried out with Wellington KGS #1-32 & #1-28, and Cutter KGS #1
 – Regional petroleum industry service companies can provide!