Sedimentologic and Stratigraphic Effects of Episodic Structural Activity During the Phanerozoic in the Hugoton Embayment, Kansas USA

W. Lynn Watney¹, John Youle², Dennis Hedke³, Paul Gerlach⁴, Raymond Sorenson⁵, Martin Dubois⁶, Larry Nicholson⁷, Thomas Hansen¹⁰, David Koger⁸, and Ralph Baker⁹

¹Kansas Geological Survey, The University of Kansas, Lawrence, KS.
²Sunflower LLC, Longmont, CO. ³Hedke-Saenger Geoscience, Ltd., Wichita, KS.
⁴Charter Consulting, Miramar, FL. ⁵ Consultant, Tulsa, OK. ⁶Improved Hydrocarbon Recovery, LLC, Lawrence, KS. ⁷Western Frontier Inc., Hanover, KS. ⁸Koger Remote Sensing, Ft. Worth, TX.
⁹Consultant, Houston, TX. ¹⁰Bittersweet Energy, Inc., Wichita, KS.
Outline

• **Anadarko Basin** – Proterozoic extension to Phanerozoic compression

• **Hugoton Embayment (HE)** – 10,000 km² northern extension of Anadarko Basin

• **Major structures in the HE** – prominent evidence of compressional reactivation along basement lineaments

• **Episodic structural movement** – post tectonic movement affecting sedimentation/stratigraphy throughout Phanerozoic

• **Pattern of deformation** – strongly influenced by basement weaknesses (the template) and evolving stress field

• **Summary**
Extensive faults and folds dominated the cratonic platform during the Proterozoic

- Two dominant directions of extensional structures in Proterozoic
- Faults reactivated during Phanerozoic compressional orogenies (Kluth and Coney, 1981)
- Inversion of once normal faults leading to reverse & oblique-slip

Marshak, Karlstrom, and Timmons (2000)
Ancestral Rockies Structures

Early Chesterian - Late Leonardian deformation

Intraplate fault reactivation is mainly dependent on orientation of (weak) fault zones relative to plate margin... deformation in interior can be represented by simple rheological models (van der Pluijm et al., 1997)

Changing/transient stress trajectories through time

Marshak, Karlstrom, and Timmons (2000)
Ages from Dickinson and Lawton (2003)
Prominent Tectonism during Morrowan and Atokan time

Top of the Early Middle Pennsylvanian (Atokan) Thirteen Finger Limestone
- View to the southeast
- Vertical exaggeration =18x
- Faults from Rascoe and Adler (1971)
- Blue outline – Extent of Atokan Thirteen Finger Limestone

- Right-lateral sense of shear along Wichita megashear (Kluth and Coney, 1981).
- Evidence for left lateral offset (Budnik, 1986)
- Palinspastic restoration oblique slip (left reverse slip) on the uplift bounding faults (McConnell, 1989)

(Higley, 2011)
Strong correlation between many Proterozoic structures exemplified by magnetic field and Phanerozoic structures

- Very close correspondence of Phanerozoic structures to magnetic anomalies
- Local and subregional changes in strike and dip appear to closely correlate to magnetic map
- Major influence on lithofacies distribution and characteristics of sequences

(Cole, 1976; Kruger, 1999)
Stratigraphic setting

<table>
<thead>
<tr>
<th>System</th>
<th>Series</th>
<th>Stratigraphic Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mississippian</td>
<td></td>
<td>Chesterian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ste. Genevieve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Louis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warsaw</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Osagian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gilmore City/Hannibal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kinderhookian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Admire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wabaunsee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shawnee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Douglas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lansing-Kansas City Gp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atoka Gp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Morrow Gp.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td></td>
<td>Virgilian</td>
</tr>
</tbody>
</table>

Generalized stratigraphic column (Montgomery and Morrison, 1999).

Subcrop pattern for Mississippian strata, western Kansas (Ebanks, 1991).

Valley incision took place during exposure of the Meramecian. Subsequent Chesterian transgression, punctuated by still-stands filled the narrow, nearly linear valley with fine-grained reservoir sand.

Dubois (2013)
Isopach of Chester delimiting incised valley system (~100 miles long)
Cutter Field
Shuck Field
Eubank Field
Pleasant Prairie Field

Structure Top
Meramec
Mississippian
Horst with faulted southwest and west flanks

(Gerlach, Nicholson, DOE-CO2)
Chester valley incision and fill predated post-Mississippian – pre-Middle Pennsylvanian Ouachita related structural events

- However, traps in valley fill sand pools were sprung by Ouachita events.
- No channel deflection around features.
- Ubiquitous fractures in Chester IVF cores.
- Antecedent paleogeomorphology controlling valley location is discussed in context of more subtle structural deformation.

- **Subsea structure on top of Mississippian Meramec** (Ste. Gen. in most of the area).
 - 25’ C.I. (smoothed)
 - Chester incised valley axis shown as white line.
 - Chester valley fill fields located within pink rectangles.
 - **Horst blocks** at Cutter, Victory, Eubank, and Pleasant Prairie are faulted on south and west flanks.
 - **Horst blocks** on north sides of regional NW-trending lineaments.
Chester Incised Valley in Kansas

Modified from Dubois

Seismic depth-converted Meramec surfaces (by Hedke)

Modified from Dubois (DOE-CO2)
The cyclic retrogradational nature of Chester shoreline advances into Kansas are interpreted to have filled incised valleys with a series of ‘back-stepping’ stacked estuarine sandstone reservoirs. Red dashed lines are postulated sequence boundaries, and purple lines are possible parasequences. (Youle)
55% expansion of the Mississippian-to-Upper Ordovician Viola Limestone interval across major fault -- Chester incised valley coincide with location of N-NE fracture set

Disrupted beds within the St. Louis interval that are suggestive of karst collapse.

Arbitrary Time Profile B-B’, W – E
Pleasant Prairie structural block
orientation of faults suggest right lateral component of faulting along a restraining bend

Arbitrary Profile A-A’, SW – NE

Morrow to basement isochron

Inferred Karst

MRW
MER
ARBK
PC

Morrow
Meramec – U. Ordo. Viola
Arbuckle
basement

Flower structure
Right lateral fault?

20% thinning

2 mi

Hedke (DOE-CO2)
Strike-Slip Faults – flower structures & restraining bends

Flower Structures
Positive (Palm Tree) \rightarrow Transpression
Right lateral

Restraining Bends-
transpressional zones
occurring at fault bends
Push Up Ridges

Modified from http://www4.uwsp.edu/geo/faculty/hefferan/geol320/strikeslip.html
Fault bounded orthogonal structural block
paleo Arbuckle karst (Ordovician in age) and Meramec karst
developed along regional NW-trending lineament

- Meramec age karst define partly define location of Chester incised valley
- Intersecting with NW-trending Arbuckle karst trend with north-trending fault corresponding with location of Chester IVF

2 mi
Chester valley incision and fill predated post-Mississippian – pre-Middle Pennsylvanian Ouachita related structural events
- However, traps in valley fill sand pools were sprung by Ouachita events.
- No channel deflection around features.
- Ubiquitous fractures in Chester IVF cores.
- Antecedent paleogeomorphology controlling valley location is discussed in context of more subtle structural deformation

- **Subsea structure on top of Mississippian Meramec** (Ste. Gen. in most of the area).
 - 25’ C.I. (smoothed)
 - Chester incised valley axis shown as white line.
 - DOE investigated Chester valley fill fields located within pink rectangles.
 - **Horst blocks** at Cutter, Victory-Eubank and Pleasant Prairie are faulted on south and west flanks
 - **Horst blocks** on north sides of regional NW-trending lineaments

Youle (DOE-CO2)
COMPARTMENTALIZATION:
Structural Compartments: Post Chester Fault Seals?

Current max. horizontal stress regime in midcontinent is NE-SW. Could Chester sands be locally sealed on the downthrown side of NW-SE trending faults?....if juxtaposed against tight Meramec Limestones?

- Perforations.

- Removed by Erosion

380' offset Meramec
122' offset Base Atoka
258' Morrow+Chester thickening
~180' Morrow Thickening (70%)
~78' additional Chester preserved on downthrown side.
Up to at least Wellington time, subsidence continued on downthrown side of fault. However, amount of downthrown subsidence appears to have decreased over time at close to a constant rate.

Since Wellington time Laramide tectonic events impacting the Keyes Dome, Sierra Grande Uplift, and Las Animas Arch resulted in 55’ of uplift and dip reversal on the Wellington in the downthrown well.
Chester valley incision and fill predated post-Mississippian – pre-Middle Pennsylvanian Ouachita related structural events
- However, traps in valley fill sand pools were sprung by Ouachita events.
- No channel deflection around features.
- Ubiquitous fractures in Chester IVF cores.
- Antecedent paleogeomorphology controlling valley location is discussed in context of more subtle structural deformation

Subsea structure on top of Mississippian Meramec
(Ste. Gen. in most of the area).
25’ C.I. (smoothed)
- Chester incised valley axis shown as white line.
- DOE investigated Chester valley fill fields located within pink rectangles.
- **Horst blocks** at Cutter, Victory-Eubanks and Pleasant Prairie are faulted on south and west flanks.
- **Horst blocks** on north sides of regional NW-trending lineaments
Shuck Field - Chester incised valley broadening into estuarine embayment to south near Oklahoma-Kansas line

- Time Meramec surface (unconformity)
- Prominent Chester IVF with rectilinear NW- and NE-trend
- Multiple drainage features on edge of topographic break bordering estuarine embayment
- Channel widths ~ 300 ft
- NW-trending and NE-trending regional structural lineaments appear to depositional system

2 mi (3.2 km)
Shallower structures and surface lineaments suggest episodic movement of NW- and NE-trending deep-seated structures along N-S Chester IVF.

- Meramec Mississippian structural contours (colors)
- Gray-scale image of Lower Permian Ft. Riley structural curvature
- Surface lineaments (red)
Dominance of the NE-trending regional lineaments controlling lower Permian deposition in SW Kansas (more northerly paleo σ_1?)

Isopach
Lower Permian Hutchinson Salt to Neva Ls. (top Pennsylvanian)

(Gerlach, Nicholson, DOE-CO2)
Proposed dissolution of lower Permian evaporites (~1000 ft below surface) during Late Tertiary & Neogene providing accommodation space for High Plains aquifer

- Inferred influence of NW- & NE-trending basement structures
- Timing of dissolution corresponds to regional uplift and tilting of Rocky Mountains and Great Plains during mid Miocene (McMillian et al., 2006; Goes and van der Lee, 2002)
- Timing similar to emplacement of gas into Hugoton Field (Sorenson, 2005)

Bedrock elevation at base Pliocene Ogallala formation

Structure top of Blaine Formation

Isopach of halite-bearing Lower Permian Blaine Fm.

Gray scale DEM of SW KS Postive above thicker Blaine halite

Chester-Morrowan Fields

Population and "fault" dissolution zone

Hypothetical depositional limit of Flowerpot salt
Regional surface lineaments maintain northwest and northeast dominant trends.

Total magnetic field intensity reduced to pole, surface lineaments, structure top Mississippian, and oil and gas fields in SW Kansas σ_1 is ~West-East.
Summary & Conclusions

- **Anadarko Basin** – Proterozoic extension to Phanerozoic compression from rift basins to horst & graben system
- **Hugoton Embayment (HE)** – 10,000 km² northern extension of Anadarko Basin and structurally integrated
- **Major structures in the HE** – prominent evidence of coupled and complex compressional events from far field stresses including diagnostic features such as flower structures and restraining bends developed along reactivated basement lineaments
- **Episodic structural movement** – post tectonic movement affecting sedimentation/stratigraphy throughout Phanerozoic including High Plains Aquifer and surface lineaments and topography
- **Pattern of deformation** – strongly influenced by prominent basement weaknesses (the template) revealed by potential fields and lineament analysis interacting with an evolving stress field

Acknowledgments -- The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE-FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and administered by the Kansas Geological Survey/KUCR at the University of Kansas and funded by DOE/NETL and cost-sharing partners.

The study is a collaboration, multi-disciplinary effort between the KGS, Geology Departments at Kansas State University and The University of Kansas, BEREXCO, INC., Bittersweet Energy, Inc. Hedke-Saenger Geoscience, Ltd., Improved Hydrocarbon Recovery (IHR), Anadarko, Cimarex, Merit Energy, GloriOil, Dawson-Markwell Exploration, and Noble Energy.