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Executive Summary

The contract for the project, “Prototyping and testing a new volumetric curvature tool for
modeling reservoir compartments and leakage pathways in the Arbuckle saline aquifer: reducing
uncertainty in CO; storage and permanence,” was signed with U.S. DOE on October 1, 2010.
The project is collaboration between the Kansas Geological Survey (KGS) and its industry
partner MVP LLC (a partnership between Murfin Drilling Company and Vess Oil Corporation).

The project study area is located in Ellis County, Kansas.

Accomplishments this quarter include: (1) ASME project peer review; (2) completed facies and
structural interpretation of McCord-A 20H image log; (3) classified facies and constructed facies
probability maps; (4) completed construction of final facies logs and facies model; (5) constructed

final fault model; (6) constructed final porosity model; and (7) constructed permeability model.

Stratigraphic, sedimentologic, and structural analysis of the image log was completed. Five facies
were identified using image and lithology logs. These facies are similar to those described from
the L. Hadley-4 core. Unexpectedly, breccia fabrics are present throughout the well bore and were
not limited to the paleokarst system as imaged by seismic volumetric curvature (VC). Observations
from the McCord-A 20H image log, L. Hadley-4 core, and the KGS 1-32 core provide important
new clues to the depositional and post-depositional history of the Arbuckle. Evidence from the
wells indicates that the Arbuckle was deposited in a restricted peritidal to supratidal setting.
Bedding and strata-bound breccias are thought to record evaporite karst. This type of strata is
preserved outside VC-imaged dolines and solution-modified fractures and faults. If true, this style
of stratigraphic architecture will have important implications for simulation-based studies of the
Arbuckle.

Faults and fractures identified from the image log have been tied to a new fault model consisting of
201 independent faults and dilational fractures. Facies probability maps were generated from the
VC map and used as a secondary variable during sequential indicator simulation. The new facies
model was used to bias the porosity and permeability logs during well-specific upscaling. All 3-D
static property models were conditioned to the 3-D facies model. Co-rendering of the various
depth-converted seismic attributes and geocellular fault, facies, and property models provide a
compelling case for careful integration of data and the predictive quality of VC. Well head samples
have been collected from four well for geochemical analyses. Other than subtasks related to XRD

and geochemical studies, all milestones (1.1-2.3) have been completed.



DISCUSSION
Approach:

Image log analysis—Image interpretation consisted of describing 1) structural features and 2)
facies. Four types of structural features are identifiable from the image log (Fig. 1). These consist
of conductive fractures/faults, partially conductive faults/fractures, faults (having obvious offset),
and bedding planes. Sand and clay are present within faults and dilational fractures. Fractures
occur more frequently near and within the VC-identified, fault-bound doline (Fig. 2). Fault and
fracture picks have been tied to their respective fault. Breccias were anticipated only in the
uppermost Arbuckle and within the paleocavern. However, breccias were unexpectedly found
along the entire length of the image log. Bedding indicators are dominantly recorded outside of the
paleocavern (Fig. 3). The lithology logs indicate a fair amount of siliciclastics and clays in the
upper Arbuckle and within the paleocavern. Non-touching vugs are only present outside the
paleocavern.

Louck’s (1999) paleokarst classification system was used for describing facies (Fig. 4). Five types
of facies were described using a combination of the image log and lithology logs. These include: 1)
crackle breccia, 2) chaotic breccia, 3) matrix-supported breccia, 4) dolostone beds, and 5) dilational
fractures. Matrix-supported breccias coincide with high silica measurements. Image examples of
both structural- and facies-based interpretations are provided in Figures 5-14.

Fault modeling—

The final fault model has been constructed. Faults in the latest model correspond to high negative
volumetric curvature values (Fig. 15). The fault model was constructed using vertical pillars, which
is consistent with fault geometries revealed by the PSDM volume. Faults intersecting the McCord-
A 20H well bore are tied to their corresponding image log pick. This model contains 201 faults,
which were successfully gridded using Rock Deformation Research’s (RDR) Petrel module. The
RDR module builds a grid by individually rotating each fault to a “best fit” plane. The 3-D
structural grid contains 2,021,250 cells (x=275; y=98; x=75). The average cell dimension is:
x=44.6 ft, y=75.2 ft, and z=9.8 ft. All property models are assigned the same 3-D grid geometry.

Additional faults can be observed in the 3-D seismic volume (Fig. 16). However, their inclusion is
not practical because: (1) individual 3-D grid cells cannot accommodate more than one fault pillar,
and (2) the project objective is to evaluate seismic VC, which is of lower resolution than the 3-D
seismic volume.

Facies modeling—Five facies were described using the L. Hadley-4 core and McCord-A 20H
lithology and image logs (Fig. 1). A facies log was constructed using a sample spacing of 0.5 ft.
The L. Hadley-4 well is located outside the study area (Fig. 17). In order to use core descriptions of
facies and routine core measurements from the L. Hadley-4 well, its logs (i.e., GR, XPHI) were
compared to wells within the study area, so that it could be used as a “pseudo well.” The best
match is to Colahan-B29. The surface location for the L. Hadley-4 pseudo well is immediately NE
of Colahan-B29. The KB elevation for the pseudo well was changed so that the Arbuckle log pick
intersected the Arbuckle surface. The facies logs were upscaled using the “most of” averaging
method.



Well log-based facies distributions are biased in several ways. First, the McCord-A 20-H, prior to
its landing (3618—4309-ft MD), was drilled outside the margins of the doline and passed vertically
through the stratigraphic section. A facies log from this part of the test boring would be biased
toward “unaffected” host strata. Then the test boring passes horizontally through the paleocavern
system (4309-5351-ft MD). Here, the facies log is biased toward mechanically compacted rock
fabrics, such as crackle and chaotic breccias. The final segment, drilled horizontally through
unaffected host strata, is biased strongly toward bedded dolostones. The Hadley-4 core provides
additional constraint on facies distributions for the uppermost Arbuckle. An additional
complication arises because no modern wireline logs exist for the few basement penetrations in the
area. Owing to these uncertainties, the facies distributions input into the 3-D modeling algorithm
were strongly biased toward VC-derived facies probability maps (Fig 18). The result is a more
geologically realistic facies model (Fig 19).

Three probability maps were constructed to constrain the spatial distribution of the facies model.
Their distribution is based on outcrop analog studies of paleokarst. The volumetric curvature map
was used to delineate three main facies associations: (1) those coincident with VC-imaged
fractures and faults (facies: dilational fracture fill); (2) those coincident with dolines (facies:
chaotic and crackle breccia); and (3) those coincident with host strata (facies: bedded dolostone
and matrix-supported breccia). It should be reiterated that strata-bound breccias probably formed in
response to evaporite dissolution and burial compaction. These strata-bound, comparatively thin-
bedded breccias (meter-scale) reflect an arid, peritidal to supratidal setting in contrast to seismic-
scale paleocaverns linked to glacio-eustatic, vadose karst processes.

The facies were modeled using sequential indicator simulation and deterministically derived 2-D
facies trends. Using this method, at each grid cell the algorithm: (1) searches for nearby data, (2)
builds an uncertainty distribution using indicator Kriging, and (3) then selects a simulated value
from the uncertainty distribution. Kriging equations are modified locally to account for azimuthal
changes in facies continuity. Facies variogram calculations are problematic because facies
continuity is nested within/or outside of paleokarst features and, therefore, facies patterns exhibit a
locally varying azimuth. As such, the lateral range of each variogram reflects their individual,
average lateral continuity across the field (fracture fill xy: 50 ft; bedded dolomite and matrix
supported breccia xy: 1000 ft; crackle and chaotic breccia xy: 500 ft). The vertical variogram
ranges are a function of karst penetration and fracture depth (fracture fill: 100 ft; paleocavern fill:
20 ft; host strata: 5—15 ft). The nugget for all facies was set artificially low (0.01) because outcrop
studies indicate that the nugget is largely a function of sufficiently small-scale heterogeneities (<1
ft) that do not impact effective reservoir properties.

Porosity modeling—In contrast to well data, seismic data is areally extensive over the reservoir
and is, therefore, of great value in constraining facies and porosity trends within models. A PSTM
acoustic impedance inversion solution was generated. However, because it is in time, it offers little
3-D utility other than visualization. Petrel’s™ volume attribute processing (i.e., genetic inversion)
was used to derive a PSDM porosity attribute to condition the revised porosity model. A new
seismic volume was created by re-sampling (using the original exact amplitude values) the PSDM
50-ft above the Arbuckle and 500-ft below (i.e., approximate basement). A cropped PSDM volume



and porosity logs (XPHI) were used as learning inputs during neural network processing. A
correlation threshold of 0.85 was selected and 10,000 iterations were run to provide the best
correlation. The resulting porosity attribute was then re-sampled, or upscaled (i.e., average
method), into their corresponding 3-D property grid cell (Fig. 20).

The latest porosity model was constructed using sequential Gaussian simulation (SGS) (Fig. 21).
The porosity logs were biased to the 3-D facies model during arithmetic average upscaling. A
normal porosity distribution was used as input for each facies during SGS. The same variogram
settings used during facies modeling were also used during SGS of porosity. During SGS, the
seismic porosity grid was used as a secondary variable for collocated co-Kriging and the
correlation coefficient was arbitrarily set to 0.8 for each facies.

Permeability modeling—Fifty-five permeability measurements from L. Hadley-4 core plugs were
upscaled using harmonic mean and bias to facies (Fig. 17). Core permeability values measured
0.001-4609.800 mD. Ranges per individual facies are as follows: fracture fill (0.01-e1.00 mD);
bedded dolostones (0.31-16.29 mD); matrix-supported breccias (0.44-2059.57 mD); crackle
breccia (0.01-4609.80 mD); chaotic breccia (0.01-€2000 mD). Permeability was modeled using
SGS. A log normal permeability distribution was chosen for each facies because the sample size
per facies is not statistically valid. Variogram ranges were set to the same range as facies.
Probability maps were used as a local varying azimuth for their respective facies. Except for
fracture fill, each facies was conditioned to the 3-D porosity model using collocated co-Kriging
and a 0.8 correlation coefficient. The resulting permeability model reveals geologic complexity
consistent with paleokarst analogs where the permeability architecture is dominantly strataform
within host rock (Loucks, 1999: Fig. 22).

RESULTS

The RDR fault modeling module permitted gridding of complex fault geometries that are
consistent with the VC interpretation. Such complex 3-D grid geometries are critical for assessing
the utility of seismic VC using simulation techniques. If the structural grids are a crude
approximation of the actual fault geometry, then all subsequent simulation scenarios will abide by
the idiom garbage in, garbage out. The new structural provides a skeleton upon which to (1)
construct fault/fracture damage zones using discrete fracture network (DFN) models and (2)
generate local grid refinements to accommodate properties related to complex permeability
patterns (e.g., clay smears, cataclastites). This new structural framework provides more than 50
fault-bound segments that will enhance compartmentalization studies (Fig. 23). The new facies
probability maps and facies model provide a geologically realistic approximation of the
stratigraphic architecture with collapsed paleocaves, suprastratal deformation, and strataform host
rock (Fig. 24 A-B). Arbuckle geomorphology at the study area suggests capture via karst
depressions and solution-enlargement of antecedent faults/fractures recorded by clastic-filled
fissures (Fig. 24 C). Likewise, the facies used for the model are consistent to those observed in
outcrop analog studies (Loucks 1999, Loucks et al. 2004) and subsurface studies of Ordovician
paleokarst (Kerans, 1988). Effective porosity permeability, and flux across fault boundaries will be
assessed during future simulation studies.



CONCLUSIONS:

Efforts for the next quarter will concentrate on DFN modeling, responding to the ASME peer
review, and completing the continuation application for BP3. Additionally, well logs from the
study area will be screened to determine if they have the requisite logs for processing additional
lithology logs. These could be used to provide additional well control for facies modeling. An
important revelation resulting from this project is the likely occurrence of evaporite karst. This
has important implications for CCS characterization projects of Arbuckle strata in Kansas. Fluid
behavior within reservoirs impacted by evaporite karst processes would have significantly better
conformance than those overprinted by deeply penetrative vadose karst processes. It is also
important to note that karst morphologies identified using VC attributes at Bemis-Shutts Field
have not been observed at Wellington Field, Kansas. Determination of the drivers for this style
of vadose paleokarst has important implications for CCS in Kansas. Constraining the age of
exposure and the roll of accommodation is important for understanding and predicting the style
of paleokarst and its impact on reservoir architecture.

One issue that should be addressed is the influence of the Arbuckle velocity model on intra-
Arbuckle karst morphologies. The existing velocity model encompasses the interval from surface
to top Arbuckle. As such reflectors below the Arbuckle/Simpson contact largely mimics the
overlying Arbuckle surface. A PSDM volume that includes velocity profiles down to the
basement would lead to a better understanding of karst morphologies and whether dilational
fractures (i.e., fissures) and solution-enlarged faults are rooted in underlying basement structures.

Cost Status

Please refer to Attachment 1

Schedule/Milestone Status

Please refer to Attachment 2

BPI1 Milestone Status: A three-month, no cost extension was granted to the project for BP1.
Seismic reprocessing—including volume merging—was delayed because of protracted contract
negotiations with numerous stakeholders. Signed agreements were finally in place by February
2011, some four months after award. The project is largely on schedule. BP1-BP2 milestone status
is as follows:
* Milestone 1.1 (completed): obtain field data including 3-D seismic, gravity
magnetic, satellite imagery, production records, and well logs
* Milestone 1.2 (completed): seismic processing and interpretation, VC-analysis,
surface mapping, generate pre-spud geocellular model
* Milestone 1.3 (completed): history match well performance using pre-spud



geocellular model

* Milestone 1.4 (completed): locate, permit, drill, and log horizontal borehole
(i.e., McCord-A 20H)

* Milestone 2.1 (in progress): complete formation evaluation: log analysis, XRD,
core analysis, and water geochemistry

* Milestone 2.2 (completed): complete final VC-attribute and seismic inversion

Changes in Approach or Aims

There have been no changes in approach or aims since the last quarterly report (8").

Actual or Anticipated Problems

Thhere are no updates regarding actual or anticipated problems since the last quarterly report
(8").

No problems that would jeopardize the project objectives have been encountered. Modifications
to the SOPO are discussed above. Potential problems after the successful completion and logging
of the horizontal test boring are not anticipated. A no-cost extension for BP1 was granted in early
July. The presence of breccias and large faults as recorded by the full-bore micro-imager
indicates the lateral has fulfilled the project objectives.

Absence or Key Personnel Changes

Thhere are no updates regarding absence or key personnel changes since the last quarterly report
(8").

Saibal Bhattacharya, previous Joint PI, resigned from the KGS in May 2011. Lynn Watney has
agreed to assume Joint-PI responsibilities and assist with managerial tasks. A search is underway
for a permanent simulation engineer. Gene Williams, a consultant, the principal in Williams
Petroleum Consulting in Houston, was contracted to build the series of simulations required for
the project. He has considerable experience with CO,-EOR comes highly recommended by staff
at CMG. Mr. Williams comes with the expertise and experience that is needed to fit into the
project and no disrupt the workflow. Eugene Holubynak joined the KGS ERS in 2012 as a
simulation engineer. He will be conducting additional simulation-based investigations.

All other key personnel, as listed in the proposal, continue to work for and are part of this study.
No personnel changes are anticipated at this point in time. KGS has also hired undergraduate
engineer, Aadish Gupta, whose primary is to coordinate handling of well data and building input
data files for geomodels and simulation. Also, Mina Fazelalavi, a graduate engineer from KU to
conduct quality control, normalization, and analysis of LAS wireline log files for the DOE
projects and to assist in building integrated geomodels suited for simulation.



Technology Transfer

Results to date were presented in October 2012 to the ASME Peer Review board in Pittsburgh.
The project website (http://www.kgs.ku.edu/PRS/Bemis/index.html) has been constructed and is
available for public access. The project web site will display all results and interpretations
obtained from this study and will be maintained by the KGS. Technology transfer activities are
anticipated to begin during the final half of the last year, when all data collection has been
completed, and analysis, interpretation, and modeling are in progress to demonstrate and validate
the feasibility of using volumetric curvature analysis to characterize paleokarst reservoir
compartmentalization to better model of CO; storage and permanence in saline aquifers such as
the Arbuckle in Kansas.
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Figure 11. McCord-A 20H image log examples.
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Figure 13. McCord-A 20H image log examples.
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Facies: (0) Dilational Fracture Fill
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Figure 18. Probability maps used for conditioning facies and petrophysical models.
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