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Abstract

Slug tests are frequently used to characterize the
transmissivity of an aquifer. In highly permeable aquifers,
however, problems arise when conventional analytical
techniques are applied. In an aquifer consisting of coarse sand
and gravel overlain by silt and clay, we have consistently seen
deviations from the expected response of linear theoretical
models. Typically, we see a systematic lack of fit to traditional
models and a dramatic dependence of the slug test on the
magnitude of the initial displacement. In some wells we have
also observed oscillatory behavior. Although there are some
theories describing oscillatory behavior in slug tests, until now
it has been difficult to analyze tests which are in the so-called
"critically damped" region. We have developed a unified
model for slug tests that includes the effect of nonlinear terms,
inertia, turbulence (spatial velocity distributions), viscosity and
differing casing and screen radii. The equation for the borehole
can be obtained by either considering the mechanical energy
balance equation or by considering the Navier-Stokes equation.
This borehole equation is coupled to the aquifer equation by
the boundary conditions at the well screen. Generally, the
effects of viscosity and changing casing-screen radii are
negligible. However, the effects of nonlinearities, inertia, and
spatial velocity distributions can be quite important. The
nonlinear terms make slug test results dependent on the initial
head, inertial effects are important when oscillatory behavior is
observed, and spatial velocity distributions cause the effective
water column length to be greater than expected. This general
model can be reduced to a Hvorslev type model by assuming no
storage in the aquifer. We have obtained an iterative numerical
solution to this model and have applied it to field data from our
research site. The results are quite good both for oscillatory
and non-oscillatory situations and give consistent estimates of
the physical parameters for various initial displacements.
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Introduction

Slug tests are frequently used to characterize the
transmissivity of an aquifer. In highly permeable aquifers,
however, problems arise when conventional analytical
techniques are applied. At one of our field sites in an aquifer
consisting of coarse sand and gravel overlain by silt and clay
(GEMS - Geohydrologic Experimental and Monitoring Site),
we have consistently seen deviations from the expected
response of linear theoretical models. Typically, we see a
systematic lack of fit to traditional models and a dramatic
dependence of the slug test on the magnitude of the initial
displacement (Figures 1 and 2). The transient pressure spike
seen at very early time is caused by a water hammer effect due
to initiation of the slug test and will be ignored in this paper.

Figure 1 shows some typical slug test data from a GEMS
well that does not oscillate, but for which the conventional
theories do not offer an adequate explanation. The main
problems shown in the data of Figure 1 are: 1. the response is
dependent on the initial head and 2. the Hvorslev (1951) and
Cooper, Bredehoeft, and Papadopulos (CBP,1967) models
show a systematic lack of fit. In all linear theories the
normalized responses for various initial slug heights should

collapse onto one curve. Clearly, this is not the case in Figure
1.

In some wells we have also observed oscillatory behavior
(Figure 2). Some of the earliest attempts to analyze oscillatory
data were by Krauss (1974) and van der Kamp (1976), in which
they invoked a number of assumptions to make the theory
linear. Kipp (1985) has also dealt with the linear theory of
oscillatory slug test responses by using Laplace transforms and
numerical inversions to calculate type curves. Kabala et al.
(1985) are among the first to consider the use of a nonlinear
equation to describe the oscillatory slug test behavior.
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However, after considerable numerical study, they state that
"the linear model is sufficiently accurate in all practical cases."
The data in Figure 2 show that their conclusion is not valid for
this well.

We have developed a unified model for slug tests that
includes the effects of nonlinear terms, inertia, turbulence
(spatial velocity distributions), viscosity and differing casing
and screen radii. We have developed a numerical solution
under Hvorslev type assumptions that should be valid over the
whole range from "overdamped" to "underdamped" conditions.

Navier-Stokes Equation for the Borehole

The motion of the water in the borehole can be described
by the Navier-Stokes equations (Eskinazi, 1967). If we
consider the borehole as a stream tube with average flow in the
z direction the z component equation is

vV _ dV vp LBy2
+V—=- —V4v 1
ER p p ()

V is the average velocity of the water in the borehole in the z
direction, g is the acceleration of gravity, P is the pressure, p is

the density and U is the viscosity. This equation is basically a

force balance equation per unit fluid mass and can be integrated
in the z direction over the length of the borehole shown in
Figure 3 to obtain an energy or work balance equation. We
assume that the length of the screen (b) is negligible in
comparison with the water column length,

b <<z, +h(t) (2)
We will also assume that the water is incompressible (p is
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constant) and that the viscosity is constant. Pg and Py are taken
to be the pressures at the screen and the top of the water
column, respectively. r¢ and rg are the casing and screen radii,
respectively. If we assume a parabolic distribution of velocities
across the borehole radius as shown in Figure 4, we can write

Te

2
V= Vo[l—%}. 3)

With all of these definitions and assumptions equation (1)
becomes

h 1 2 V| dn?
(h+Zo+b)E+5{l—[2;Cb) :|(E) =—g(h+Zo+b)

Lol 2”(h+z0+b)ﬂ1—
p TP dt

4)

which is a nonlinear ordinary differential equation for the time-
dependent height of the water column in the borehole.

Hvorslev Style Approximation

In the spirit of the Hvorslev (1951) and Bouwer and Rice
(1976) methods, we can assume that the storage in the aquifer
is negligible. We shall use the usual definition of the Hvorslev
time lag

717’2

{ =—= 5
o= K )

(F is the Hvorslev form factor) and define two more quantities



A= 6
2g7rr§ (6)
and
8
M=—F (7)
gtOGC

With these definitions and dividing by gtg, equation (4) can be

rewritten into an equation embodying the Hvorslev
approximation

2 2
(h+z,+b)d ?+FKA(ih-)
gt, dt dt

dh ®)
+[M(h+z, +b)+1](?5)+— =0

Equation (8) is the nonlinear equivalent to the usual linear
Hvorslev equation. This equation only has one unknown
parameter, K. The rest of the physical parameters in equation
(8) can be measured directly in the field or laboratory.
Therefore, a least squares fit of the numerical solution of
equation (8) to field data for h(t) should yield a value for K, the
aquifer conductivity. When the acceleration term is negligible
and M = O this is the same model presented by McElwee et
al.(1992) for the non-oscillating case.



Initial Analysis

Since the fully nonlinear equation (8) can not be solved
analytically, we must resort to numerical techniques. We have
had good results applying a point iterative method. This
numerical solution has been incorporated into an automated
well test analysis package called SUPRPUMP (Bohling and
McElwee, 1992). As mentioned earlier there is really only one
parameter available for fitting in equation (8): K, the hydraulic
conductivity of the aquifer. We discovered a number of things
when we tried to fit the field data. First of all, it was
impossible to fit the overall shape of the oscillatory field data
with only one available parameter. The values of A and M in
equations (6) and (7) were quite small and did not seem to fit
the field data. The value of A calculated from equation (6) for

our field data was about .7 sec2/ft3. The kinematic viscosity

(L/p) is about 10-5 ft2/sec. Therefore, neither of these

parameters played an important role in the analysis of our data.
We decided to treat A as an adjustable parameter to be
determined by fitting the data. McElwee et al. (1992) had
pretty good success using this kind of model when no
oscillating water column was observed. Unfortunately, when
applied to oscillatory data the model with two parameters (A
and K) still did not give a good overall fit to the shape of the
curve. Most troubling of all, a constant set of values for A and
K did not seem to predict the head dependence of the slug test
properly. In the process of trying to fit the data, we observed
that increasing the length of the water column in the borehole
by adding a constant to the term (h + z, + b) in equation (8) led
to a much better model reproduction of the general shape of the
field data. So, it seemed that something involving acceleratory
work was missing in the physical model.



Revision of the Model

An alternate method of deriving the equation of motion of
the water column in a slug test can be obtained by considering
an energy balance equation (Hansen, 1967). Consider the
water column inside the borehole (Figure 3) to be a control
volume. The change of energy within the control volume over
time is determined by the work done at the free surface and the
amount of energy that flows out the screen. Detailed
consideration of the average kinetic energy per unit volume of
the borehole shows that our earlier equation needs to be
modified. In actual fact there will be other velocity
components inside the borehole other than the average vertical
velocity describing the drop of the water column. These
velocity components may be random in nature (turbulence) or
axially circular (curl of velocity not zero) but when averaged
over the borehole they do not contribute to the net flow of water
out the screen. However, these velocity components may carry
significant energy and must be considered when averaging the
kinetic energy over the control volume, which is the entire
borehole. With reasonable assumptions, it can be shown that
the average square velocity is larger than the square of the
average velocity by a factor greater than one.

—_(dh Z[g 2]
1% —(dt) 3+oz 9)

This implies that the kinetic energy of the water column can be
significantly larger than one might suspect based on the average
vertical velocity (dh/dt).

Modifying equation (8) as suggested by equation (9) gives
the final form for the mathematical model.



T .42
(h+zo+b)[g+a d*h FKA(dh)
gt, L3~ la® dt

(10)

+:M(h+z0+b)+1](%)+-t-h—=0

o

By considering an energy based equation we arrive at the same
basic equation as is obtained starting from the Navier-Stokes
equation; however, the kinetic energy contribution of velocity
components other than those in the vertical direction may be

considerable and a new model parameter (o) has been added.

Numerical Solution

A numerical method using point iterative techniques can
be used to solve equatlon (10). The numerical expression for
the head at the latest time level (n+1) is given by

ety _ Coef (n=1,m)h"™ + coef (n)h"
coef(n+1,m)

(11)

where m is an iteration index. The coefficients are defined as
)
2(i + o )
coef (n+1,m)=1+| M +—3 (" +z, +b)
gt At
y ,  (12)

(hn+l(m) _ hn—l
\ 2At

+ FKA




2(—+a2)
coef (n—1,m)=1+| M ——3 (h" +z, +b)

gt At
, (13)
n+tl(m) _ . n-1
+ FKA h h
2At
and
4 2 n
4 —+a” |(h" +z,+b) IA?
coef (n) = — (14)

gt At t

o

Data Analysis

The model represented by equations (11)-(14) has three

parameters (o, A, K) which may be adjusted to fit the field
data. We have had good results fitting this model to the GEMS
data. Figures 5 and 6 show the fitted theoretical values as stars
on the field data plots. The theory describes the head
dependence and general shape of the field data very well. Both
the non-oscillatory (Figure 5) and oscillatory (Figure 6) data are
predicted very well with the fitted values. Field data for a
variety of initial slug heights are reproduced well for a single

set of parameters (o, A, K). Earlier models (McElwee et al.,

1992) fit the non-oscillatory data pretty well but the parameters
had some dependence on the initial slug height. In general, the
effect of the viscosity term in the model appears to be

insignificant. The factor (4/3 + 0.2) in the model implies that
velocity components other than in the z direction carry about
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15% of the kinetic energy since o = .5 is the best fit value. The
4/3 arises from the assumption that there is a parabolic
distribution of velocities along the radius. Any other radial
distribution will give a slightly different result; however, the
important point is that the column is usually carrying more
kinetic energy than would be predicted by simply using the
average vertical velocity (dh/dt). These two contributions
together increase the kinetic energy about 60% over the uniform
velocity case. The other parameter, A, was fitted with a
magnitude of 55-70 for this field data. This is much larger than
would be calculated from equation (6) for A. Clearly, some
physical mechanism has been left out of the model, apparently
with the same mathematical form as the term involving A in
equation (10), but with a much larger magnitude. Further
research is needed to shed light on the nature of this
mechanism.

Figures 7 and 8 are simply single plots of the field data
and theory for one particular value of the initial slug height.
These plots allow one to better assess the quality of the fit of
theory to experiment. In general the fit is very good. Figure 9
is a Hvorslev type plot of the field data and theory for the non-
oscillatory well. Notice that the data is becoming very noisy
after about 12 seconds, so little quantitative information is
available beyond tht time. Also notice that the theoretical curve
is approaching a straight line whose slope is proportional to K
at large time (McElwee et al., 1992). However, there is little
hope that data could ever be collected in this region since the
response is too small. Only in the overdamped case will this
straight line portion move into the range where it is measurable.
In the case of wells in the critically damped region, we will
always see this characteristic downward curvature on a
Hvorslev plot.
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Conclusions

Generally, the effects of viscosity and changing casing-
screen radii are negligible on slug test responses. However, the
effects of nonlinearities, inertia, and velocity distributions can
be quite important. The nonlinear terms make slug test results
dependent on the initial head, inertial effects are important
when oscillatory behavior is observed, and non uniform
velocity distributions cause the effective water column length to
be greater than expected. We have developed a general model
incorporating all these features. This general model can be
reduced to a Hvorslev type model by assuming no storage in the
aquifer. We have obtained an iterative numerical solution to
this model and have applied it to field data from our research
site. The results are quite good both for oscillatory and non-
oscillatory situations and give consistent estimates of the
physical parameters for various initial displacements. The
theory predicts the general shape and head dependence
observed in the field data. Further research in needed to
identify the source of the strong nonlinearity represented by one
parameter.
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Figure 1.
Slug Test Response at GEMS Well 02
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Figure 2.
Slug Test Response at GEMS Well 07/
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Figure 3. Schematic of the Slug Test Wellbore
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Figure 4. Assumed Radial Velocity Distribution



Figure 5.
Slug Test Response at GEMS Well 02

1.20 j

Fitted Parameters

a = .5 2,03
A = 70 sec.“/ft.
> 1.00 K = .0022 ft./sec.
N—’
<
,, 0.80 ‘
S \ Initial Height h,
= q ¥, 3.84 ft.
© 080T AN - — 7.62 ft.
L i Y - —— 11.88 ft.
- X e 13.86 ft.
g04oj :##:#Theory
) i
s 0.20
- i
O -
— 0.00
_0'20-IIIIITlII|IIIIITTTIIlllllllll|lllllllll]
0.00 5.00 10.00 15.00 20.00

Time (Sec.)



Figure ©.
Slug Test Response at GEMS Well O/
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Figure 7.

Slug Test Response at GEMS Well 02
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Figure 8.

Slug Test Response at GEMS Well O/
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Figure 9.
Slug Test Response at GEMS Well 02
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