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ABSTRACT

Joshua C. Artman

Department of Geography, December 2000

University of Kansas

This study used geospatial clustering software with globally-available, environmental data sets to predict the regional-scale distribution of potential vegetation in Mexico.  The core/ periphery approach to predicting core and transitional regions for each vegetation type was developed and tested, scale-dependent needs of environmental classification were addressed, and the techniques developed were used to project current vegetation distributions into the future, under conditions of global climate change, to produce projected vegetation distributions.


Precipitation, temperature and elevation variables were compared with Rzedowski’s Potential Vegetation of Mexico using ArcView to define core (unique) and peripheral (shared) vegetation-environment associations.  These were clustered using ERDAS Imagine.  Accuracy assessments showed that core and peripheral areas of vegetation could be identified in error matrices.  Although further refinement is needed, the core/ periphery approach appears to be an effective approach to understanding distributions and potential changes for at least some major vegetation classes. 

Three sets of the same variables were assembled using the same resolution for topographic factors but differing actual and apparent resolutions for the climatic variables.  Results showed no significant difference between the lower resolution, .50-degree, global, climatic data sets and the nominally higher resolution, .01-degree, regional, climatic data sets in predicting potential vegetation distribution.

A model predicting potential vegetation distribution was developed using LoiczView to cluster topographic and climatic data sets.  Thirty-eight different classifications were performed.  Classifications were compared to each other and to Rzedowski’s Potential Vegetation Distribution.  The most effective proxy for potential vegetation predicted Pine-Oak Forest, Tropical Deciduous Forest, Thorn Forest, and Desert Scrub for western Mexico and was realized when clustering Mexico by ecologically similar subregions.

LoiczView’s ‘best prediction’ for potential vegetation was used to project ‘current’ vegetation distributions fifty years into the future under conditions of global climate change.  Current climatic data were replaced with two, projected climate scenarios produced by a GCM
 created at the Hadley Centre.  Results showed significant changes in projected vegetation distributions for a less conservative scenario (1.0% / annum CO2  increase without sulfates) and detectable but more moderate vegetation changes for a conservative scenario (0.5% / annum CO2  increase with sulfates).
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INTRODUCTION

Scientists have long realized that environmental factors influence the geographical distribution of vegetation, that certain features of climate are strongly correlated to plant type, and that consequently, mechanisms exist which connect climate to vegetation.  Probably the first extensive study on the relationships between climate and vegetation was conducted by Theophrastus (370 BC to 285 BC).  Theophrastus developed an understanding of the importance of climate to plant distribution through both observation and experiment.  Woodward (1987) quotes Theophrastus’ assertion that “each tree seeks an appropriate position and climate is plain from the fact that some districts bear some trees but not others” (p. 1).  Studies by Willdenow (1792) and von Humboldt (1807) were the first to use fossil remains to show that both climate and vegetation have changed throughout time and that this congruent change was the best evidence for a cause and effect relationship between climate and vegetation.


In fact, early global climate maps were drawn according to the boundaries of existing global vegetation maps.  Cramer and Leemans (1993) remarked:

Perception that vegetation…represents a good summary for regional gradients in climate has been used indirectly for the compilation of large-scale global climate maps.…[thus] vegetation became a main source of information for global climate classifications….[such as] Koeppen (1884) and (1936), Holdridge (1947), Thornwaite (1948), and Troll and Paffen (1964) (Cramer and Leemans, 1993, p. 191).

These early pursuits of relating climate to vegetation were extended by de Candolle (1855) who described what would later become the philosophy of modern plant geography.  He stated that the principal aim of plant geography was “…to show what, in the present distribution of plants, may be explained by present climatic conditions” (Woodward, 1987, p. 2).

  Since de Candolle’s (1855) description of plant geography, many scientists have explored, identified, and quantified the relationships that exist between climate and vegetation.  Each scientist employed a particular approach, modeling methodology, and set of environmental variables to predict the geographic distribution of vegetation in various regions and at different scales of the world.

Objectives

My primary objective for the study was to create a model that predicts the regional potential vegetation distribution of Mexico using globally available climatic and terrestrial data sets. Use of globally available data sets will give the vegetation model the advantage of global applicability.  This small-scale approach to environmental classification permits me to study how much predictability can be extracted from global data sets and how the results differ from the more traditional use of large scale, regional data sets.

Kuchler (1988) described potential vegetation as a vegetation composition consisting of mature or climax vegetation stands in which disturbance history (i.e., anthropogenic influences) is absent.  Potential vegetation is analogous with the fundamental ecological niche of a species, which is the “conjunction of ecological conditions within which a species is able to maintain populations.”  This can be compared to the realized niche, “that part which is actually occupied” (Peterson et al., 2000, p. 6).  Predicting actual land cover would be more useful than predicting potential vegetation, but the methodology developed in this study was an important first step towards developing such models (Peterson et al., 2000; see below).

My secondary objective was to examine modeling the potential vegetation distribution using the core/ periphery approach to predicting both core and transitional regions of each vegetation class.  The core/ periphery approach attempts to model vegetation by identifying unique and non-unique environmental conditions.  The unique areas might be considered to define the core region of each vegetation class where unique combinations of environmental conditions occur.  Peripheral areas outside the core region described by slightly different environmental conditions that aren’t as unique as the environmental conditions that describe the core area should represent potential transition zones between vegetation classes.  

Significance of Study 

The study has developed from my work on the “Mexico Project”, a project studying the Biodiversity Consequences of Global Climate Change in Mexico.  The Mexico Project is developing:

a method for projecting shifts in species distributions under scenarios of environmental change.…Based on analysis of primary occurrence data and ecological niches.…Landscape transformations are modeled according to global climate change scenarios based on the results of general circulation model simulations.…Ecological niches are characterized on current landscapes and then projected onto transformed landscapes to predict distributional changes (Peterson et al., 2000, p. 1).  


In the future, modeling may be refined by adding coverages such as vegetation type that would greatly improve the predictive ability of niche models.  “Secondary models linking vegetation type to climate features would permit hypotheses of vegetation distributions under changed climates” (Peterson et al., 2000, p. 13).  

This study creates a vegetation model so that vegetation distribution can be predicted on both current and projected landscapes.  These vegetation distributions will allow the Mexico Project to better characterize ecological niches on both current and projected landscapes, which ultimately will provide a better prediction of species’ distributional changes under scenarios of environmental change (i.e., the regional-scale effects of global climate change on the biological diversity of Mexico).


The significance of this study is based on the following points:

1. Innovative clustering models are used that have unique clustering and visualization capabilities, providing insights into climate and vegetation interaction.

2. The core/ periphery approach to modeling vegetation provides insights into the interaction between climate and vegetation.

3. Scale-dependent needs of environmental classification are addressed, which will identify the benefits and weaknesses of using globally available as compared to regionally available data sets.

REVIEW OF THE LITERATURE

Numerous scientists have attempted to quantify the relationships between climate and vegetation, in part, to use in vegetation models that predict the geographic distribution of vegetation.  Each model or classification scheme utilizes a specific approach, modeling methodology, set of environmental variables, and scale of study.

Approaches

There are two general approaches to modeling vegetation distribution:

1. A process-based, mechanistic approach in which the climatic control of plant distribution is viewed as operating through basic physiological processes.  For example, “frost, drought and membrane sensitivity to low temperatures are likely to be the mechanisms which control plant survival and therefore distribution at freezing temperatures” (Woodward, 1987, p. 75).  Early plant geographers (such as Schimper, 1898 and Walton, 1931, 1968, 1973, and 1976) conducted studies attempting to provide a physiological explanation for why certain plants are able to survive in particular areas (Woodward, 1987).

2. A correlative, regression-based approach in which the climatic control of plant distribution is based on a taxonomy of vegetation and climate (Woodward, 1987).  Both Holdridge (1947, 1967), and Box (1981) have established that strong correlations exist between life form or physiognomy and two broad features of climate: temperature and water budget.

Neilson (1995) states that modeling methodologies for predicting continental and global scale vegetation distribution “…are rapidly evolving from largely correlational to more process-based approaches,” because hard physiological limits exist beyond which life forms of vegetation can not exist (p. 1).  For example, in the United States minimum winter temperatures below –40 C, the supercooled freezing point of water, limit the northward spread of most temperate deciduous trees, and vegetation surviving these temperatures is classed as needle-leaf (Neilson, 1995).

Modeling Methodologies

There are many modeling methodologies presented in the literature, but all can be divided into two types: static or dynamic models.  “Static ecosystem modeling assumes equilibrium conditions in both the climate and the terrestrial vegetation…to date, these schemes have tended to be applied to global databases, generally of gridded climatic statistics” (Henderson-Sellers, 1994, p. 211).  Static models tend to be easier to implement than dynamic models and so most vegetation models used for classifying vegetation have been of the static type.

In contrast, dynamic models have been developed primarily to capture the transient response of vegetation to a changing climate.  These ecosystem models are being tested at regional scales but have not yet been applied to the global scale (Henderson-Sellers, 1994, p. 211).  Dynamic models are becoming more popular with the advent of more efficient data storage and handling, faster computing, and more sophisticated visualization capabilities.

Franklin (1995) divides modeling methodologies into three different classifications.  These classes are as follows:

1. Boolean methods assign a location (grid cell in a spatial database) of class membership in only one class based on ranges of values of the explanatory or environmental variables (e.g., using Boolean logic or set theory).

2. Parametric methods are statistical models that predict the probability of class membership for categorical response variables (maximum likelihood classification, general linear models) that predict the value of a continuous response variable such as species abundance, or that combine probabilities using Bayes Theorem.  Parametric methods make assumptions about the underlying data distributions.

3. Machine-learning methods include inductive classification (or decision) trees and genetic algorithms, as well as artificial neural networks and expert systems.  These methods can be thought of as non-parametric because they make no assumptions about the distributions of the underlying data.  They predict a probability of class membership for categorical response variables, usually based on frequency distributions in the data used to train the model.

Table 1 (Franklin, 1995) identifies the most appropriate modeling methods for studies using particular types of data, which can include a continuous or categorical dependent variable and continuous, mixed, or categorical independent variables.

Table 1: Usability of Modeling Methods Categorized by Variable Types 

Dependent variable

Independent variables



Continuous
Mixed
Categorical

Continuous
Regression models

Regression tree

GLM
ANCOVA

MANCOVA

Regression tree

GLM
ANOVA

MANOVA

Regression tree

GLM



Categorical
MLC

Logit (GLM)

Discriminant Analysis

GAM

Classification tree
MLC with priors

Logit (GLM)

GAM

Classification tree

Neural Networks

Genetic Algorithms

Expert Systems
Contingency table

Logit (GLM)

 GAM

Classification tree

Neural Networks

Genetic Algorithms

Expert Systems

Source: Franklin (1995).
* ANCOVA - Analysis of Covariance


MANCOVA - Mulitvariate Analysis of Covariance


GLM - Generalized Linear Model


GAM - Generalized Additive Model


MLC - Maximum Likelihood Classification

Table 2 (Franklin, 1995) summarizes a number of studies that illustrate various modeling methods and environmental variables.  These represent techniques that could be applied to predicting the distribution of potential vegetation in Mexico.

Table 2: Modeling Methods and Variables Used in Past Climate-Vegetation Studies

Study
Modeling method
Environmental variables

Miller, 1986
Regression
Elevation, aspect, slope diversity

Franklin et al., 1986
Boolean
elevation, aspect

Cibula and Nyquist, 1987
Boolean
elevation, aspect

Frank, 1988
Maximum likelihood classification (MLC)
elevation, aspect, relief, slope-aspect index, satellite spectral data

Burke et al., 1989
Canonical correlation
Elevation, slope, aspect, fetch

Nicholls, 1989
GLM (logit)
temperature, precipitation, elevation, lithology, topography, exposure

Fischer, 1990
Bayesian
elevation, slope, radiation, geology, soil type, snow cover, landuse

Davis and Goetz, 1990
Logit regression
elevation, slope, aspect, radiation, upslope catchment area, geology

Franklin and Wilson, 1991
Discriminant analysis, MLC
elevation, slope, aspect, satellite spectral data

Twery et al., 1991
rule-base methods
slope position

D.M. Moore et al., 1991
Classification tree
slope, aspect, geology, hillslope position, upslope catchment area

Lees and Ritman, 1991
Classification tree
slope, aspect, geology, hillslope position, upslope catchment area, satellite spectral data

Lowell, 1991
Discriminant analysis
original vegetation type, soil, fire history, distance to forest

Fitzgerald and Lees, 1992
Neural networks
elevation, slope, aspect, geology, upslope catchment area, satellite spectral data

Palmer and Van Staden, 1992
Contingency table analysis
Elevation, annual rainfall

Martinez-Taberner et al., 1992
Boolean
water chemistry

Walker et al., 1992
Boolean
Elevation, topographic moisture

Ostendorf, 1993
Regression
runoff (from terrain-based hydrological model)

Brzeziecki et al., 1993
Bayesian
temp, precip, elev, slope, aspect, soil properties

Mackey and Sims, 1993
MONOMAX
avg. daily temp of the warmest quarter

Austin et al., 1994
GLM (logit)
Temperature, precipitation

Brown, 1994
GAM and GLM (logit)
elevation, radiation, topographic moisture, snow accumulation

Mackey, 1994
MONOMAX
temp, precip, radiation, nutrient index

Payne et al., 1994
Genetic algorithms
slope, aspect, geology, flow length, flow accumulation, satellite spectral data

Fels, 1994
Multiple regression
elevation, slope, aspect, slope curvature

Noest, 1994
Logit regression
Groundwater height, dune age, duration of inundation, antecedent climate, etc.

Mackey et al., 1995 (6)
MONOMAX
soil texture, slope, topographic moisture, slope position

Source: Franklin (1995).
* MONOMAX - Maximum Likelihood Monotonic Functions

With the advent of newer technologies, complex, machine learning modeling methods (e.g., classification trees or neural networks) are used more frequently.  Benefits of using these newer machine-learning methods as compared to using more traditional discrete or parametric modeling methods (e.g., boolean or regression) include not having to make any assumptions about the distributions of the underlying data, which translates to decreased uncertainty in model results.  Also, most boolean and parametric modeling methods can not account for spatial autocorrelation and therefore, the resulting classes may be more fragmented than the real world feature or process being modeled.

Environmental Variables

Each classification utilizes a set of environmental variables.  These climatic and/or terrestrial variables provide the basis for predicting the geographic distribution of vegetation.  These variables are selected on the basis of expert knowledge, previous studies, data availability, data scale, etc.

In an effort to group the environmental variables that have a physiological influence on plants, Austin and Smith (1989) argue that there are three different types of environmental gradients that influence vegetation distribution with corresponding environmental variables: 

1. Indirect gradients have no direct physiological influence on plant growth; correlation with vegetation pattern is likely to be location specific (Franklin 1995).  Slope is an example of an indirect-gradient variable because it has no direct influence on plant growth. 

2. Direct gradients involve variables that have a direct physiological impact but are not consumed by plants. Temperature and pH are examples of direct-gradient variables.

3. Resource gradients are the matter and energy variables used by the plants for growth.  Light, water, nutrients, carbon dioxide and oxygen are example of resource-gradient variables.

Numerous scientists have attempted to map the regional-scale distribution of vegetation by using the geographic distribution of environmental variables.  Brzeziecki et al. (1993) implemented a parametric, Bayesian modeling method using temperature, precipitation, elevation, slope, aspect, and soil properties to predict the distribution of potential vegetation.  Payne et al. (1994) implemented a non-parametric, machine-learning, genetic algorithm method using slope, aspect, geology, flow length, flow accumulation, and satellite spectral data to predict the distribution of actual vegetation.  Both of these vegetation studies are listed in Table 2.

Several studies have identified significant environmental factors that influence the distribution of vegetation.  In particular, the primary influences of precipitation and temperature are well documented in the literature (von Humboldt and Bonpland 1805; Holdridge 1947; Box 1981).  But recent studies have indicated that the hydrological budget and minimum temperature are even better predictors of the distribution of vegetation.  Woodward (1987) asserted that at global scales extreme minimum temperatures and the hydrological budget, especially drought, effectively predict the distribution limits of the major vegetation types. 

Other scientists also concluded that mean annual precipitation and temperature variables were not good predictors of vegetation distribution, so they derived new variables.  These new ‘bioclimatic’ variables were derived from mean precipitation and temperature variables.  This approach began with Holdridge (1947).  The Holdridge Life Zone Classification is based on three climatic parameters: biotemperature (annual heat sum), mean annual precipitation, and a potential evapotranspiration (PET) ratio.  Tchebakova et al. (1993) affirm that many scientists have implemented Holdridge’s system to predict global vegetation, partly because the system only requires climatic data that is generally available (e.g. Emanuel et. al. 1985; Leemans 1989; Prentice 1990; Prentice and Fung 1990; Monserud and Leemans 1992).  Other scientists who derived bioclimatic variables to predict the distribution of major vegetation zones are Budyko (1956, 1971, 1974, 1986), who used radiation balance and a dryness index and Box (1981), who used moisture index and climatic extremes.

Overall, scientists have used a variety of variables, from straightforward climatic or topographic variables to derived bioclimatic variables, to predict the distribution of vegetation.  We also see more physiologically-based variables (e.g. minimum annual temperature, water budget, etc.) used as predictors as well as edaphic or soil variables and climatic variables that incorporate the seasonality component of a region (e.g. mean monthly precipitation, mean monthly temperature, etc.).

Scale of Study

Scale can be addressed in two different dimensions: space and time.  Spatial scale is defined by the region of study and is usually described in terms of local, regional, or global scale.  Moore et al. (1991) present an example of a local scale study.  Their effort used decision tree analysis to predict the distribution of forest communities in a 100 km2 area on the south coast of New South Wales, Australia.  At a regional scale, Brzeziecki et. al. (1993) utilized a set of climatic, topographic and soil parameters to predict the regional scale distribution of 71 forest communities, covering an area of 41,000km2, in Switzerland.  Tchebakova (1993) created a global scale vegetation model using dryness index, potential evaporation, and mean temperature based on the climatological approach of Budyko.  Each of these three studies has a distinct spatial scale, and used data that are most appropriate for the scale of study.

Environmental variables act at different spatial scales, and variables must be selected that are most appropriate for the scale of study.  Franklin (1995) reveals that in a spatial hierarchy of environmental controls on vegetation distributions, climatic variables correspond to vegetation patterns at the broadest scales, followed by geology (and its affect on soil chemistry and nutrient availability) and topography, which moderate many of the macroclimatic regimes. This may prove useful in choosing variables that best predict vegetation at a regional-scale such as that of the Mexico study.

Environmental variables are represented by data at a specific spatial resolution.  Two different sets of climatic data are compared in the Mexico study, each with a specific spatial resolution.  A globally available, 0.50-degree resolution CRU data set is compared to a regionally available, 0.01-degree resolution CONABIO data set to see if there are benefits to using lower resolution as compared to higher resolution data sets. 

Temporal scale is most often described as temporal resolution of the data and temporal coverage or interval of the study.  Temporal resolution is the frequency at which climatic data are collected or reported (e.g. hourly, daily).  Temporal coverage is the time period for which data are collected and used for a study (e.g. 30 or 50 years).

A variety of scale dependent needs must be addressed for any vegetation study.  Predictions of vegetation distribution based on climate characteristics are dependent on climate data and, therefore, Prentice (1990) contends that “those wishing to model interactions between climate and ecosystems must reconcile the different spatial and temporal scales of atmosphere and ecological processes” (p. 243).  For example, what are appropriate spatial and temporal scales for measuring how vegetation will change under conditions of global climate change (e.g. What is the migration time for forests, decades to centuries, and what distance measurement will reflect this migration, meters to kilometers)?

STUDY AREA


Mexico extends from 117(11’W to 86(44’W (~2700 km) and from 32(44’N to 14(35’N (~1800 km) and covers a geographic area of 1,972,550 square kilometers (ArcView GIS).  Mexico shares a land border with the United States to the north and Guatemala and Belize to the southeast.  However, Mexico’s more extensive borders are with the Pacific Ocean to the south and west, the Gulf of Mexico to the east and part of the Caribbean Sea to the far southeast.  The country’s extremely varied topography creates a diversity of climates (O’Brien and Liverman 1996, p. 55):  

The mountainous terrain and dissected topography of Mexico result in tremendous climate variability over short spatial distances, with variations corresponding as much to altitude as to latitude.  Other permanent controls influencing the climate include land-sea distributions, the influence of offshore ocean currents, and the location of tropical storm tracks.  Despite large variations, the climate of Mexico can be divided into three broad categories:

1. The wet, tropical climates that are generally found in southern Mexico and on the Pacific and Gulf coasts, south of latitude 24(N.

2. The temperate, seasonally moist climates typical of the mountainous areas and central plains.

3. The dry climates generally found in the northern part of the country, including the Baja California Peninsula and the Pacific coastal plains north of latitude 25(N.

Figure 1 shows Koeppen’s Climate Classification of Mexico, extracted from Koeppen’s Climate Classification of the World.  It illustrates the three broad categories of climate described by O’Brien and Liverman (1996).
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Figure 1: Koeppen’s Climate Classification of Mexico illustrates the

three broad climate categories found in Mexico.
Mosino and Garcia’s (1974) Topography of Mexico shows the complex topography that influences both the climate and vegetation distribution in Mexico (see Figure 2).
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Figure 2: The Topography of Mexico shows the complex topography

that influences the climate and vegetation distribution in Mexico.

METHODOLOGY

The steps involved in achieving the objectives of this study are to collect, organize, analyze, model, and visualize the vegetation and environmental data sets of Mexico.  This section contains descriptions of the software and models, the collection and organization of variables, the core/ periphery approach to modeling vegetation, a comparison of higher vs. lower resolution data sets, core/ periphery fieldwork, modeling potential vegetation distribution using LoiczView (a recently developed geospatial clustering program), accuracy assessments, and projections of potential vegetation distribution under conditions of global climate change. 

 Description of Software

Microsoft Access (Microsoft Access URL) – a database management system used for managing and querying large, data sets.

Microsoft Excel (Microsoft Excel URL) – a spreadsheet used for organizing, and analyzing smaller, data sets.

Microsoft Word (Microsoft Word URL) – a word processor used for updating files and changing file formats of data sets.

ESRI ArcView (ArcView GIS URL) – a desktop mapping and Geographic Information System (GIS) software used for collecting, organizing, manipulating, deriving, and analyzing environmental data sets.

ERDAS Imagine (Imagine GIS URL) – a remote sensing software with image analysis, GIS, and spatial modeling capabilities used for clustering environmental data sets to predict the distribution of potential vegetation in Mexico.

LoiczView (LoiczView URL) – a clustering program with unique visualization capabilities (i.e. color-coded similarity analysis) used for clustering environmental data sets to predict the distribution of potential vegetation in Mexico.  LoiczView, designed by Bruce Maxwell for the LOICZ project (LOICZ URL), is a statistical modeling software designed for similarity analysis of high-dimensional data sets.  Specifically, it was designed as a geospatial, clustering program for the systematic global and regional classification of the world’s coastlines, but is applicable to any georeferenced data set.

Applying the Clustering Software

ERDAS Imagine – An unsupervised classification is used that is based on statistical patterns or natural groupings of pixels in the image data.  According to user-specified parameters, these groups can later be merged, disregarded, or manipulated.  The unsupervised classification implements an ISODATA algorithm that iteratively classifies pixels, redefines the criteria for each class, and classifies again, so that spectral patterns in the data gradually emerge.  The ISODATA method uses minimum spectral distance to assign a cluster for each candidate pixel (ERDAS Field Guide, 1994).  The unsupervised classification technique is a more computer-automated classification as compared to the supervised classification that requires a priori or already known information about the data. The unsupervised classification allows a user to specify some parameters, which the computer uses to uncover statistical patterns inherent in the data.  Unfortunately, unsupervised classifications simply create clusters of pixels with similar characteristics, which do not necessarily correspond to directly meaningful characteristics of the scene, such as contiguous, easily recognized areas of ‘potential vegetation’ (ERDAS Field Guide, 1994).
LoiczView – LoiczView implements an unsupervised k-means clustering algorithm for clustering familiar points.  The algorithm takes as input a distance measure, a data set, and a desired number of clusters.  Three distance measures are offered; euclidean, scaled euclidean, and maximum scaled distance (MSD).  MSD, a distance measure successfully used in image comparison and object recognition tasks in the field of computer vision, lets the extremes rule judgements of similarity; two vectors cannot be similar if they have a single variable that is very different.  MSD may better capture what we think of as similar vegetation.  Also, LoiczView offers a method to determine the most appropriate number of classes based on the concept of Minimum Description Length.  Matrices can be produced that indicate the relative importance of each variable in determining the clusters. LoiczView also uses a novel algorithm to visualize the resulting typologies by assigning colors to different classes of data based on class similarity in a high-dimensional space.  The clusters can be visualized in two or three dimensional space (LoiczView URL).

Collection and Organization of Variables

Mean monthly precipitation and temperature (also with wet-day frequency, diurnal temperature range, minimum temperature, maximum temperature, radiation, vapor pressure, sunshine, cloud cover, ground frost frequency, and wind speed) were developed by the Climatic Research Unit (CRU URL) and are available through the Intergovernmental Panel on Climate Change’s Data Distribution Centre (IPCC DDC URL). The data set consists of globally-available, .50-degree resolution, continuous, mean monthly climatology constrained to the period 1961–1990 (see Figure 3).

[image: image3.wmf]1047.34

713.69

1959.99

948.05

2182.61

1391.51

457.92

580.58

1102.9

0

500

1000

1500

2000

2500

Precipitation

(mm)

PineOak

Thorn

Cloud

TropDec

TropRain

TropSubDec

DesertScrub

Grassland

Aquatic/SubA.

Mean P


Figure 3: CRU .50-degree globally-available temperature and precipitation climatologies.  Temperature is in (C, Precipitation is in mm. Colors are arbitrary and represent a range in values.

Mean annual precipitation and temperature data for Mexico were acquired from the National Commission for Studying and Conserving the Biodiversity of Mexico (CONABIO URL). Two sets of precipitation and temperature grids were obtained that have the same spatial resolutions, but different categorical resolutions.  Both sets of grids were projected at .01-degree resolution but one set was divided into a total precipitation range of 10 classes and a temperature range of 6 classes (see Figure 4 and Table 3); and the second set was divided into 19 precipitation classes and 15 temperature classes (see Figure 5 and Table 4).
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Figure 4: CONABIO .01-degree regionally-available 6-class temperature and 10-class precipitation climatologies. Temperature is in (C, Precipitation is in mm. Colors represent a range in values. Numbers in the legend represent midpoints for each range of values. 


Table 3: CONABIO .01-degree regionally-available 6-class temperature


and 10-class precipitation ranges and midpoints.
PRECIPITATION

Midpoints
TEMPERATURE
Midpoints

Class 1 – 0-125mm

63mm
Class 1 - < 0
 0C

Class 2 – 125-400mm
263mm
Class 2 – 0-5C
 3C

Class 3 – 400-600mm
500mm
Class 3 – 5-12C
 9C

Class 4 – 600-800mm
700mm
Class 4 – 12-18C
 15C

Class 5 – 800-1200mm
1000mm
Class 5 – 18-22C
 20C

Class 6 – 1200-1500mm
1350mm
Class 6 – 22-26C
 24C

Class 7 – 1500-2000mm
1750mm


Class 8 – 2000-2500mm         2250mm


Class 9 – 2500-4000mm
3250mm


Class 10 - > 4000mm
4750mm
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Figure 5: CONABIO .01-degree regionally-available 15-class temperature and 19-class precipitation climatologies. Temperature is in (C, Precipitation is in mm. Colors represent a range in values. Numbers in the legend represent midpoints for each range of values.


Table 4: CONABIO .01-degree regionally-available 15-class temperature



and 19-class precipitation ranges and midpoints.
PRECIPITATION

Midpoints
TEMPERATURE
Midpoints

Class 1 – < 50mm

25mm
Class 1 - < -2C
-5.0C

Class 2 – 50-100mm
75mm
Class 2 - -2-5C
1C

Class 3 – 100-200mm
150mm
Class 3 – 5-6C
C

Class 4 – 200-300mm
250mm
Class 4 – 6-8C
7C

Class 5 – 300-400mm
350mm
Class 5 – 8-10C
9C

Class 6 – 400-500mm
450mm
Class 6 – 10-12C
11C

Class 7 – 500-600mm
550mm
Class 7 – 12-14C
13C

Class 8 – 600-800mm
700mm
Class 8 – 14-16C
15C

Class 9 – 800-1000mm
900mm
Class 9 – 16-18C
17C

Class 10 – 1000-1200mm
1100mm
Class 10 – 18-20C
19C

Class 11 – 1200-1500mm
1350mm
Class 11 – 20-22C
21C

Class 12 – 1500-1800mm
1650mm
Class 12 – 22-24C
23C

Class 13 – 1800-2000mm
1900mm
Class 13 – 24-26C
25C

Class 14 – 2000-2500mm
2250mm
Class 14 – 26-28C
27C

Class 15 – 2500-3000mm
2750mm
Class 15 - > 28C
29C

Class 16 – 3000-3500mm
3250mm


Class 17 – 3500-4000mm
3750mm


Class 18 – 4000-4500mm
4250mm


Class 19 - > 4500mm
4750mm


Minimum and maximum annual temperature data were also acquired from CONABIO.  These temperature grids were projected at .01-degree resolution and divided into 5 classes.

Mean elevation data were obtained from the National Oceanic and Atmospheric Association’s (NOAA) National Geophysical Data Center (NGDC) (NOAA ETOPO5 URL).  ETOPO5 (Earth Topography - 5 Minute) continuous, elevation data, compiled by the U.S. Naval Oceanographic Office and the Defense Mapping Agency, consists of digital average land and sea floor elevations assembled from several uniformly gridded data bases into a worldwide gridded data set with a 5-minute grid resolution (NOAA ETOPO5 URL).

Mean elevation data were also obtained from the United States Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center (HYDRO1K URL).  HYDRO1k (see Figure 6) was developed from EROS’s continuous, 30-arcsecond digital elevation model (DEM) of the world GTOPO30 (HYDRO1K URL).

Slope and aspect were derived from the HYDRO1k elevation data using ArcView’s surface analysis capabilities to produce .01-degree resolution grids (see Figure 6).

Latitude was derived from latitude coordinates contained within a classed CONABIO precipitation table to produce a .01-degree grid (see Figure 6).
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Figure 6: Derived slope, latitude, and aspect, and ETOPO5 elevation topographies.  Slope is in (. Elevation is in m. Aspect is in (. Colors represent a range in values. Numbers in the legend represent midpoints for each range of values.

Potential vegetation was obtained from a digitized vector map of Rzedowski’s (1978) potential vegetation of Mexico (Rzedowsk’s Potential Vegetation URL) (see Figure 7).  Rzedowski has classified the potential vegetation of Mexico into 9 categories (see Table 5).
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Figure 7: Rzedowski’s Potential Vegetation Distribution of Mexico: the target map for the study.  The Aquatic and Sub-aquatic vegetation class was excluded for the study.


Table 5: Rzedowski’s nine potential vegetation classes of Mexico.

Vegetation Class 1: Pine Oak Forest

Vegetation Class 2: Thorn Forest

Vegetation Class 3: Cloud Forest

Vegetation Class 4: Tropical Deciduous

Vegetation Class 5: Tropical Rain Forest

Vegetation Class 6: Tropical Semideciduous

Vegetation Class 7: Desert Scrub

Vegetation Class 8: Grassland

Vegetation Class 9: Aquatic and Semiaquatic

Mexico political boundaries were obtained from Environmental Systems Research Institute Inc. (ESRI URL).

The data were transformed into a useable and comparable format for analysis.

1. Classed precipitation and temperature grids obtained from CONABIO were converted from ESRI’s ArcInfo format to ESRI’s ArcView format, imported into ArcView, and then converted to grids at a .01-degree grid resolution.

2. Minimum and maximum temperature station data obtained from CONABIO were imported into ArcView, interpolated, converted into .01-degree resolution grids, and divided into 5 classes.

3.  Mean monthly CRU data were converted into mean annual climatological values using a customized Fortran program.

A. Tables were imported into ArcView and .50-degree resolution grids were created.

B. CRU .50-degree grids were resampled to a functional resolution of .01-degrees so to be comparable with the other gridded data.

4. ETOPO5 and HYDRO1K elevation data sets were imported into ArcView, grids were produced at a .01-degree grid resolution.

5. Slope and aspect were derived from HYDRO1k elevation data and .01-degree resolution grids were created in ArcView.

6. Latitude was derived from latitude coordinates contained within a classed, CONABIO precipitation table to produce a .01-degree grid in ArcView.

7. Rzedowski’s (1978) digitized Potential Vegetation of Mexico map was imported into ArcView and converted into a .01-degree grid.

8.  Polygon coverage of Mexico’s states was imported into ArcView.

9.  All grids were ‘clipped’ so they match perfectly for analysis.

Core/ Periphery Approach to Modeling

First, several of the environmental variables were visualized using histograms to better understand the variability of the climatic and topographic values between vegetation types.  Histograms of total annual precipitation, minimum elevation, mean elevation, and maximum elevation, and mean annual temperature, maximum annual temperature, minimum monthly temperature, and maximum monthly temperature were created using Excel.

Next, data sets of three environmental variables were organized and analyzed using ArcView to provide insights into the relationships between the environmental variables and potential vegetation.  The data sets used were the less classed CONABIO precipitation (10-class) and temperature (6-class) grids, and the ETOPO5 elevation grid.  The grids were ‘clipped’ using each vegetation class and tables were produced that reflect the combinations of classes or ranges for each environmental variable found within each vegetation class.

I hypothesized that there exist key combinations of specific temperature, precipitation and elevation values associated only with certain types of vegetation.  These environmental combinations might be considered to define the core area of a vegetation class.  These core areas should provide a clear distinction among vegetation classes.  Peripheral areas outside the core areas, associated with slightly different environmental conditions that aren’t as unique as the environmental values that define the core areas, should represent potential transition zones between vegetation classes.  Accordingly, each vegetation class was searched for areas that contained combinations of variable values not found in any other class.  These unique areas are defined as core regions of the vegetation type.

Figure 8, a profile of a distribution of Pine Oak, Grassland, and Desert Scrub, illustrates the core/ periphery concept.  Each vegetation type has a core and periphery area.  The core areas are associated with a unique combination of environmental values.  The peripheral areas are transition areas between vegetation types and are associated with actual vegetation shared between two or more vegetation types and slightly different environmental values that are not unique.  
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Figure 8: The Core/ Periphery Approach to Modeling Potential Vegetation – Core and peripheral regions are identified within the overall distribution of each potential vegetation type.  The most distinction between vegetation types are the core areas.  Vegetation composition is identified for each core and peripheral region.

ERDAS Imagine was used to cluster the data to delineate the core and periphery areas of each vegetation class and help prediction of the potential vegetation distribution.  Imagine was selected because of its geospatial clustering capabilities and to explore the potential of using a remote sensing software traditionally used for land cover classification to classify potential vegetation.

Twenty classifications or model runs were performed differing in either the variables used or the number of clusters.  Classifications were then compared with Rzedowski’s Potential Vegetation of Mexico to assess the correspondence or accuracy, which determines the overall effectiveness in predicting the distribution of potential vegetation in Mexico.   

The CONABIO 6-class precipitation, CONABIO 10-class temperature, Hydro1k elevation, and derived latitude, slope, and aspect variables were used first.  The Hydro1k elevation data set was selected over ETOPO5 elevation data set because of its greater resolution and its post-processing (removal of elevation anomalies) that creates a more hydrologically correct data set.  All six variables were imported into Imagine from ArcView where the grids were stacked, effectively unioning the variables into one file that could be classified.

An unsupervised classification was performed on the stacked grids.  The results of this classification were maps of clusters where each cluster represented a statistical grouping of similiar data points that could potentially be identified with one of Rzedowski’s Potential Vegetation classes.

After each classification, the resulting cluster map was visually compared with the previous cluster map and to Rzedowski’s Potential Vegetation map.  If the maps were sufficiently similar then they were quantitatively compared through contingency tables or error matrices and traditional remote sensing accuracy assessment statistics such as user’s and producer’s accuracy, overall accuracy and the kappa statistic.  Progressive refinements were made to each classification with respect to variable selection and number of clusters produced.   

Using Higher vs. Lower Resolution Data Sets

An important consideration when choosing proxy variables is the appropriate spatial resolution of the data needed to accurately define each vegetation class.  The first three classifications compared the use of higher vs. lower resolution data sets for predicting the regional-scale distribution of potential vegetation.  Six variables were used in the study; elevation, slope, aspect, latitude, temperature and precipitation.  Three sets of variables were assembled with each set containing all of the above variables.  However, the spatial resolutions of the temperature and precipitation variables were different for each set with the first set (Classification 1) containing CONABIO’s 10-class precipitation and 6-class temperature variables, both at a .01-degree resolution.  The second set (Classification 2) contained CONABIO’s 19-class precipitation variable and 15-class temperature variables, both at a .01-degree resolution.  The third set contained CRU’s continuous precipitation and temperature variables, both at a .50-degree resolution.  Results were analyzed to identify if significant benefits occur when using higher resolution data sets to predict the regional-scale distribution of potential vegetation.

Accuracy Assessment

An accuracy assessment was performed to analyze the similarity or correspondence between the classified grids and Rzedowski’s Potential Vegetation map.  Several remote sensing techniques and statistics were used to assess accuracy including error matrices, producer’s accuracy, overall accuracy and the kappa statistic.  The steps involved in the accuracy assessment were as follows:  

1. Error matrices or contingency tables were manually entered into Excel from summary reports created in Imagine.  These error matrices were numerical descriptions of the correspondence between the clusters (y-axis) and Rzedowski’s Vegetation classes (x-axis).  Each value in the table represented the number of pixels that corresponded to the associated cluster and vegetation class.

2. New error matrices were produced that identified ‘% Area of a cluster being vegetation class x’ by dividing each value by its respective row total.

3. Arbitrarily numbered clusters produced from the unsupervised classification were identified and labeled as one of Rzedowski’s Vegetation classes by identifying the vegetation class that occupied the greatest ‘% Area’ within each cluster (i.e. identifying which vegetation class each cluster best represented).

4. An updated error matrix was manually entered into Excel using labeled or classed clusters.

5. Producer’s Accuracy, User’s Accuracy, Overall Accuracy and the Kappa statistic are calculated in Excel and used to determine the accuracy or correspondence of the classed grids to Rzedowski’s Potential Vegetation map (i.e., the overall effectiveness of predicting the distribution of potential vegetation in Mexico).
The different statistics represent various ways remote sensors measure accuracy.  The user’s accuracy is a measure of commission error and means that pixels are included that do not belong to a class.  It is a measure of reliability or probability that a classified pixel actually represents the reference pixel.  The producer’s accuracy is a measure of omission and means that pixels are omitted that should have been assigned to a class.  Analysts are often interested in this statistic because it indicates how well an area can be classified.  The overall accuracy is a simple measure of the overall classification accuracy and excludes both commission and omission errors found in the user’s accuracy and producer’s accuracy, respectively.  The kappa statistic is the more complex measure of the overall classification accuracy because it incorporates the most information, specifically, both the commission and omission errors (Congalton, 1991).

Fieldwork

Fieldwork was conducted around Durango, Mexico to test my hypothesis that there are core and peripheral areas for each vegetation class, that the core areas should exhibit the clearest distinction between vegetation classes, and that peripheral areas should be associated with transition zones between vegetation classes.

The region around Durango was chosen because it was most accessible to the greatest number of potential core areas within a compact geographic region.  Three regions including both potential core areas and the transitional areas outside or between the core areas were explored: Pine-Oak Forest, Grassland, and Desert Scrub.  A route was selected that connected each of the three regions.  Vegetation within and between the three core regions was surveyed and recorded with photography and GPS.  Specific locations along the route were determined from either visible changes in the vegetation or selecting locations approximately every 5 kilometers apart.  Anthropogenically disturbed regions (both urban and agricultural) were recorded but not included in the analysis.  

Modeling Potential Vegetation Distribution

LoiczView was used for the final modeling of Mexico’s potential vegetation (LoiczView URL).  LoiczView was chosen because of its utility and novelty in clustering high-dimensional data sets with the capability of color-coded similarity analysis, two or three-dimensional viewing of clusters, choice of distance measures, and optimal cluster algorithms.

The CONABIO 19-class precipitation, CONABIO 15-class temperature, Hydro1k elevation, and derived slope variables were used.  Each grid was exported from ArcView and imported into Access where the grids were joined into one table and updated into a LoiczView compatible format.  

Then, an unsupervised classification was performed in LoiczView.  Thirty-eight classifications were performed, each differing in either variable composition, number of clusters, distance measure, size of grid, and/or grid resolution.  After each classification, the resulting cluster map was compared with the previous cluster map and Rzedowski’s Potential Vegetation Distribution.  Progressive refinements were made with respect to variable selection and number of clusters produced.  Rzedowski’s Aquatic/ Subaquatic vegetation class was excluded from classification because this vegetation type, identified primarily as small bodies of water, such as lakes, is difficult if not impossible to predict with the environmental data sets used in the study.

Accuracy Assessment

An accuracy assessment, similar to the one employed with ERDAS Imagine, was performed to analyze the similarity or correspondence between the classified grids and Rzedowski’s Potential Vegetation Distribution.  Error matrices, producer’s accuracy, overall accuracy and the kappa statistic were created for the accuracy assessment.  

Projecting Potential Vegetation Distribution

LoiczView’s ‘best prediction’ for Rzedowski’s Potential Vegetation Distribution was used to project ‘current’ vegetation distributions fifty years into the future under conditions of global climate change.  HADCM2
, a general circulation model (GCM) created at the Hadley Centre (Hadley GCM URL), has produced two climate scenarios of how climates could change over the next fifty years, a conservative scenario (HHGSDX50), and a less-conservative scenario (HHGGAX50).  The HHGSDX50 conservative scenario assumed a 0.5% / annum CO2  increase and incorporated the negative forcing from sulfate aerosols.  The HHGGAX50 less-conservative scenario assumed a 1.0% / annum CO2  increase and did not incorporate the negative forcing from sulfate aerosols.  The grids for each scenario were at a 2.5( x 3.75( resolution and based on a 30-year average (2040-2059).  The grids, represented by change values, were imported into ArcView and summed with current climatic values to calculate projected climatic values.  The projected climatic variables included ‘conservative’ maximum and minimum temperature and precipitation, as well as, ‘less conservative’ maximum and minimum temperature and precipitation.  Replacing the current climatic data with the projected climatic data produced projected vegetation distributions.

RESULTS AND DISCUSSION

Core/ Periphery Approach to Modeling

The first stage of creating a predictive vegetation model was to visualize several of the environmental variables, in hopes, of gaining a better understanding of the variability of the climatic and topographic values between vegetation types.  Histograms were created in Excel that illustrated the distributions of total annual precipitation (see Figure 9), minimum elevation, mean elevation, and maximum elevation (see Figure 10), and mean annual temperature, maximum annual temperature, minimum monthly temperature, and maximum monthly temperature (see Figure 11).
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Figure 9: Distribution of annual precipitation for each vegetation class.
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Figure 10: Distributions of minimum, mean and maximum

elevations for each vegetation class.
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Figure 11: Distributions of annual minimum, mean, and maximum temperatures and monthly minimum, and maximum temperature for each vegetation class.
The histograms provide an effective visual representation of the distribution of each environmental variable within each vegetation class.  The histograms demonstrate that there is significant variability and difference in the climatic and topographic values within and between vegetation classes and that using such environmental controls may prove effective with the core/ periphery approach and may be good predictors for potential vegetation distribution.  

Figure 12 depicts the unique combinations of the (10-class) precipitation, (6-class) temperature, and ETOPO5 elevation grids.  The numbers in the legend represent numerically coded (arbitrary numbers) unique combinations of the three environmental variables.  Unique combinations or core areas of vegetation were identified in five vegetation classes, namely, Pine Oak Forest (green), Thorn Forest (orange), Cloud Forest (red), Desert Scrub (pink), and Grassland (violet).  Pine Oak Forest and Desert Scrub had the greatest number of unique combinations and the greatest area described by unique combinations.  Tropical Deciduous, Tropical Sub-deciduous, and Tropical Rain Forests, as well as, Aquatic/Sub-aquatic had no unique combinations.
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Figure 12: Core/ Periphery Approach - Unique combinations of environmental values for Grassland, Desert Scrub, Cloud Forest, Thorn Forest, and Pine Oak Forest.

The rest of Mexico, occupied by combinations of environmental variables that occur within more than one potential vegetation type, represents peripheral vegetation regions or transitional areas between the core regions of each vegetation class.  Figure 12 suggests that there is ecological reality to the core/ periphery approach for at least some vegetation types.  With refinements the approach may be useful in modeling the distribution and probable changes of potential vegetation.  Refinements might include using different sets of more appropriate environmental variables to define both larger, more contiguous core areas of vegetation and for all of Rzedowski’s vegetation classes.

Initial Clustering with Imagine

After several core areas were identified in ArcView, ERDAS Imagine was used to cluster larger sets of environmental variables, in hopes, that clustering would better delineate both core and periphery areas of each vegetation class, and ultimately, help prediction of potential vegetation distribution.  Table 6 identifies the twenty unsupervised classifications performed using Imagine, as well as the variables used in each model run and the number of clusters produced (in parentheses).

Table 6: A list of the twenty ERDAS Imagine classifications

used for the Core/ Periphery Approach to modeling vegetation.
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      * (number of clusters in parentheses)
In the first classification, slope, elevation, aspect, and Conabio’s temperature (6-class) and precipitation (10-class) were used to create a 9-cluster classification where each cluster approximated one of Rzedowski’s vegetation classes.  The variables for the classification were chosen because of their accessibility and utility in previous vegetation studies for predicting vegetation distribution.  Although no vegetation class was exactly predicted, results of the first classification were promising because general patterns of several classes could be distinguished.

Use of Higher vs. Lower Resolution Data Sets

Classifications 1, 2, and 3 were analyzed visually and quantitatively to compare the use of higher vs. lower resolution data sets for predicting regional-scale vegetation distribution.  Results showed that Classifications 1 and 2 that utilized higher resolution climatic data (.01-degree) were visually very similar to Classification 3 that utilized lower resolution climatic data (.50-degree).  Error matrices were then produced that showed a cross-tabulation of each cluster map compared to Rzedowski’s Potential Vegetation Distribution (see Table 7).  Values representing the area of each vegetation class contained within each cluster were also very similar between high resolution and low resolution classifications.  Comparing the values for each cluster and between the three classifications showed that many of the clusters, although arbitrarily numbered, were very similar and corresponded well to one another.

Table 7: Error Matrices Comparing Higher vs. Lower Resolution Data Sets.
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* Cluster Run1 or Classification 1 contains CONABIO’s 10-class precipitation and 6-class temperature variables, both at a .01-degree resolution.

Cluster Run2 contains CONABIO’s 19-class precipitation variable and 15-class temperature variables, both at a .01-degree resolution.

Cluster Run3 contains CRU’s continuous precipitation and temperature variables, both at a .50-degree resolution.

These preliminary results showed that the lower resolution (0.50-degree) CRU global data sets worked as well as the nominally higher resolution Conabio data sets in predicting potential vegetation distribution.  These results are encouraging because use of lower resolution, global data sets can provide a suitable amount of detail, as well as, having the benefits of global-availability (easily accessible, internally consistent data sets) and usability (manageable file sizes).  Comparison of the results of clustered environmental/climatic variables with the hypothetical distribution of an abstract, habitat-related index such as potential vegetation provides insights into scale-dependent needs and opportunities for environmental classification and its application to dynamic, global-change problems.

Final Clustering with Imagine
Subsequent model runs were refined by variable selection and by changing the number of clusters produced in the classification.  The first eight classifications used nine clusters to approximate each of the nine Rzedowski vegetation types.  Identifying the clusters as specific vegetation classes was difficult because the clusters were large and did not correspond well to Rzedowski’s vegetation classes.  However, producing more clusters (i.e. over-clustering) helped to identify each (arbitrarily numbered and colored) cluster by producing smaller clusters that were often contained within the target classes instead of extending between them.  The smaller, more easily identifiable clusters were then combined so clusters belonging to the same class could be merged.  

A 54-cluster classification was performed but proved too difficult to identify so an 18-cluster classification was performed.  Results showed that using 18 clusters was a more effective number of clusters, as compared to 9 and 54 clusters, for identifying the clusters and predicting vegetation distribution. 

The globally-available CRU temperature and precipitation, as well as, slope, elevation, and frost (# of frost days per year) were the most effective predictors of vegetation distribution.  The globally-available CRU temperature and precipitation performed as well as the regionally-available Conabio temperature and precipitation in Classifications 1, 2, and 3 (see Use of Higher vs. Lower Resolution Data Sets).  Elevation and Slope helped to better predict distribution for many vegetation types in Classifications 5 and 7, respectively.  Frost helped to better predict the distribution of Tropical Deciduous Forest in Classification 14.  In contrast, Aspect, Radiation, and Windspeed were found not to be significant predictors of vegetation distribution in Classifications 6, 16, and 17, respectively.


Figure 13 represents the best prediction of Rzedowski’s Potential Vegetation.  In this classification, eighteen clusters were produced using slope, elevation, frost, and CRU’s temperature and precipitation.
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Figure 13: Classification 19 – An 18-cluster classification using ERDAS Imagine.

Each cluster is arbitrarily colored and numbered.

Accuracy Assessment for Imagine

Classification 19, the best prediction of Rzedowski’s Potential Vegetation Distribution, produced eighteen clusters using slope, elevation, frost, and CRU’s temperature and precipitation.  Results of this accuracy assessment are contained in Tables 8, 9, and 10.  Except for the error matrices comparing the higher and lower resolution data sets, only one accuracy assessment was produced using ERDAS Imagine because most of the classifications were compared visually.

 The error matrix in Table 8 shows a cross-tabulation or a correspondence between the reference data or Rzedowski’s Potential Vegetation (x-axis) and the classed data or the eighteen-cluster unsupervised classification (y-axis).  To more easily identify the clusters as specific vegetation classes, an error matrix was produced in Table 9 that indicates ‘% area of a cluster being vegetation class x’ where vegetation class ‘x’ is the corresponding vegetation class found in the column.  Clusters were identified as specific vegetation classes by distinguishing the vegetation class with the greatest % area within each cluster.  For example, 83.99% of cluster 1 is Desert Scrub and 50.93% of cluster 2 is Tropical Rain Forest.

Table 8: Accuracy Assessment for Classification 19: A correspondence analysis

between Classification 19 and Rzedowski’s Vegetation Distribution.
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Table 9: Accuracy Assessment for Classification 19: An error matrix

identifying the ‘% Area of a cluster being vegetation class X’
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After the clusters were identified as specific vegetation classes, clusters belonging to the same class were combined.  In this case, the eighteen identified clusters were combined until nine clusters remained that corresponded to Rzedowski’s nine vegetation types.  Raw pixel counts in Table 8 were combined to create a new error matrix in Table 10.  Using this error matrix, accuracy assessment statistics were calculated including user’s and producer’s accuracy, overall accuracy and the kappa statistic.

Table 10: Accuracy Assessment for Classification 19: Producer’s, User’s,

and Overall Accuracies, and the Kappa Statistic.
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Results of performing the accuracy assessment indicated that four classes were identified, specifically, Pine Oak, Tropical Deciduous, Tropical Rain, and Desert Scrub.  Other classes were not identified because they accounted for a minority of the variation found within their respective clusters.  Producer’s Accuracies were high, (Desert Scrub = 92%; Tropical Rain = 89%; Pine Oak = 75%), except for Tropical Deciduous, which had a relatively low accuracy of 29%.  User’s Accuracies showed a marked drop from Producer’s Accuracies (except for Tropical Deciduous) meaning, for example, that although 92% of Desert Scrub was correctly identified as Desert Scrub, only 69% of the areas called Desert Scrub by the cluster model are actually Desert Scrub in Rzedowski’s Vegetation map.  User’s Accuracies ranged from 69% for Desert Scrub to 48% for Tropical Deciduous.  Overall accuracy of the classification was 62% with a kappa statistic of 48%.  Overall, accuracies were encouraging because several of Rzedowski’s vegetation classes were fairly well predicted, especially considering this was the first attempt at modeling the vegetation distribution.  

Core/ Periphery Identification

Each value or area within the error matrix (see Table 9) was color-coded to correspond to the number of vegetation classes described by each cluster.  Clusters dominated by one vegetation class were color-coded in red.  Clusters significantly split between two or more vegetation classes (> ~25% in each) were color-coded with red representing the dominant vegetation class and orange and/ or yellow (depending on the % Area) representing those vegetation classes that occupied significant minorities of the variation or area.

Clusters representing one vegetation class could be considered as core vegetation areas, while clusters representing two or more vegetation classes could be considered as a combination of a core vegetation area (the dominant ‘red’ vegetation class that occupies the most area) and peripheral areas (‘orange’ and ‘yellow’ vegetation classes that occupy minority areas within a cluster).  If the environmental data were clustered again in a way that would preference grouping these similar subclasses of vegetation together (i.e., the color-coded, core and peripheral areas), then this methodology would be a valid approach to defining core and peripheral areas for each  vegetation type.

For example, Figure 14, a hypothetical classification, illustrates how re-clustering the environmental data according to the color-coded areas within each cluster would help to delineate core and peripheral areas for each vegetation class.  In the first classification (on the left), Cluster 1 is overlaid on three ‘target’ vegetation classes.  Cluster 1 represents 79% of Pine Oak (the dominant ‘core area’), 13% of Grassland (a minor ‘peripheral area’), and 8% of Thorn Forest (also a minor ‘peripheral area’).  Each of these values would be color-coded in Table 9.  In a reclassification, Cluster 1 would be reclassified into Clusters 1, 2, and 3 (on the right).  Three clusters would be created because three vegetation types were significantly represented in Cluster 1.  In the reclassification, Cluster 1 now represents core Pine Oak Forest.  Cluster 2 represents peripheral Pine Oak transitioning into Thorn Forest.  Cluster 3 represents peripheral Pine Oak transitioning into Grassland. 
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Figure 14: How re-clustering data might facilitate the Core/ Periphery Approach to

Modeling Potential Vegetation Distribution.

In this manner, existing clusters in Classification 19 were reclassified to represent core and peripheral areas for each vegetation class.  The total number of color-coded areas was added and another classification was performed with the total number of areas or 36 used as the number of clusters created in the classification.  It was hoped that the 36 clusters would better cluster on the core and peripheral areas identified in Table 9.

Unfortunately, results of the reclassification showed that new clusters did not cluster on the core and peripheral areas identified in Table 9.  Cluster distributions were actually quite similar to the previous classification except that more clusters were produced.  An accuracy assessment performed on the reclassification supported this finding.  Accuracies remained identical or very similar to Classification 19.

Fieldwork

Figure 15 illustrates the application of the core/ periphery results on the preceding page, as well as the corresponding types of vegetation that were expected within the core and peripheral areas of the three vegetation types surveyed in the study: Pine Oak Forest, Grassland, and Desert Scrub.  Figure 15 depicts the unique combinations of environmental values for Pine Oak, Grassland, and Desert Scrub located around Durango.  Unique combinations for Pine Oak (green), Grassland (violet), and Desert Scrub (pink) are arbitrarily numbered and color-coded.  Red points represent the locations surveyed and the numbers associated with each red point correspond to photographs.
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Figure 15: Unique combinations of environmental values for Pine Oak Forest, Grassland, and Desert Scrub and surveyed locations around Durango, Mexico  – Study Area for Fieldwork.

Results of the fieldwork support the hypothesis that core and peripheral areas of vegetation do exist and that the core areas are the most distinctive.  Core areas were visually the most unique areas of the vegetation class.  Peripheral areas were visually less unique and had similarities to other vegetation classes.  

The core regions of Pine Oak and Grassland were the most distinctive regions of each vegetation class because they were visually the most unique areas.  Peripheral areas of Pine Oak and Grassland had vegetation characteristic of both classes and, therefore, had the least distinction between vegetation classes.  However, there were a few small areas on the route between Pine Oak Forest and Grassland that were populated with Desert Scrub vegetation.  These areas were more of an exception than the rule, and were probably not accounted for in Figure 16 because the areas were smaller than the resolution of the predictive environmental variables.

Identifying core regions of Desert Scrub and transitional regions between Desert Scrub and Grassland proved more difficult.  The core and transitional regions of Desert Scrub occupied a valley in the foothills of the Sierra Madre Occidental.  The valley was very disturbed by human activity, mostly agriculture but also grazing.  Areas populated by Desert Scrub vegetation were identified but due to the large-scale, anthropogenic disturbances it was difficult to draw any unbiased conclusions.

Discussion

The core/ periphery approach appears to be an effective approach to modeling vegetation distribution.  The identification of possible core and peripheral clusters within Table 9 showed that it should be possible to cluster core and peripheral areas of at least some major vegetation classes, which would be a significant step towards implementing the core/ periphery approach to modeling the distribution of potential vegetation.

It retrospect, it was simplistic to think that re-classifying the data using only a greater number of clusters would better delineate core and peripheral areas of vegetation.  Future work should explore the classification process, specifically, how to better control the way in which the clustering algorithm clusters familiar points.  More user control over the clustering could help to cluster the color-coded, core and peripheral areas identified in Table 9 facilitating the application of the core/ periphery approach to modeling the distribution of potential vegetation.  
Modeling Potential Vegetation Distribution

Clustering with LoiczView

LoiczView, a geospatial, clustering software was used for the final modeling of Mexico’s potential vegetation because of its utility and novelty in clustering high-dimensional data sets with the capability of color-coded similarity analysis, two or three-dimensional viewing of clusters, choice of distance measures, and optimal cluster algorithms.  

Thirty-eight classifications were performed, each differing in variable composition, number of clusters, distance measure, grid size, and/or grid resolution.  Table 11 lists each classification including the model run name, grid resolution, cluster number, and distance measure followed by a list of the variables used in each model run.

Table 11: A list of the thirty-eight LoiczView classifications

used to model the potential vegetation distribution of Mexico.

____________________________________________________________________________________________

Model Run 1

[.01] [8-cluster] [Scaled]

Conabio Temp15, Conabio Precip19, Hydro1k elev, derived slope

Model Run 2

[.05] [8-cluster] [Scaled] 

Conabio Temp15, Conabio Precip19, Hydro1k elev, derived slope

Model Run 3

[.05] [16-cluster] [Scaled] 

Conabio Temp15, Conabio Precip19, Hydro1k elev, derived slope

Model Run 4

[.10] [8-cluster] [Scaled] 

Conabio Temp15, Conabio Precip19, Hydro1k elev, derived slope

Model Run 5

[.10] [16-cluster] [Scaled] 

Conabio Temp15, Conabio Precip19, Hydro1k elev, derived slope

Model Run 6

[.05] [8-cluster] [Scaled] 

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 7

[.05] [16-cluster][Scaled] 

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 8

[.05] [8-cluster][MSD] 

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 9

[.05] [16-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 10

[.05] [8-cluster][MSD] 

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 11

[.05] [16-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 12

[.05] [8-cluster][Scaled] 

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 13

[.05] [16-cluster] [Scaled]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 14

[.05] [6-cluster][MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 15

[.05] [12-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 16

[.05] [18-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 17

[.05] [6-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 18

[.05] [12-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 19

[.05] [5-cluster][MSD] 

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 20

[.05] [10-cluster][MSD] 

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 21

[.05] [5-cluster][Scaled] 

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 22

[.05] [10-cluster][Scaled] 

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 23

[.05] [5-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 24

[.05] [10-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 25

[.05] [6-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 26

[.05] [12-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 27

[.05] [6-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 28

[.05] [12-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 29

[.05] [6-cluster] [Scaled]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 30

[.05] [12-cluster] [Scaled]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 31

[.05] [6-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 32

[.05] [12-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 33

[.05] [6-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 34

[.05] [12-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 35

[.05] [30-cluster] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 36

[.05] [30-cluster->9clustermerge] [MSD]

Conabio Maxtemp, Conabio Mintemp, Conabio Precip19, Hydro1k elev, derived slope

Model Run 37

[.05] [12-cluster] [MSD] Conabio + projected “conservative” climate changes

Conabio Maxtemp conservative, Conabio Mintemp conservative, Conabio Precip19 conservative, Hydro1k elev, slope

Model Run 38

[.05] [12-cluster] [MSD] Conabio + projected “less conservative” climate changes

Conabio Maxtemp less conservative, Conabio Mintemp less conservative, Conabio Precip19 less conservative, Hydro1k elev, derived slope

____________________________________________________________________________________________

* [grid resolution] [number of clusters] [distance measure]

  List of environmental variables used in the classification

Preliminary classifications using LoiczView were compared to each other and Rzedowski’s Potential Vegetation Distribution and showed:

1. Vegetation classes that occupied higher elevations such as Pine Oak and Tropical Deciduous were better predicted.
2. 16-cluster classifications were a better visual match to Rzedowski’s Potential Vegetation Distribution than were 8-cluster classifications.

3. Temperature extremes predicted transitional areas of Pine Oak and Tropical Deciduous better than average annual temperature.

4. Maximum Scaled Distance measure or MSD predicted transitional areas of Thorn Forest and Desert Scrub better than the Scaled Euclidian Distance measure.

Figure 16 illustrates the division of Mexico into four subregions.  The east-west division tracks the continental divide and separates Mexico into eastern and western halves.  The north-south division separates Mexico into two, roughly equal northern and southern halves.
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Figure 16: Major divisions separate subregions of Mexico

that were clustered using LoiczView.

Classifications 19 through 30 clustered Mexico’s subregions identified in Figure 16.  The number of clusters used for classifying each subregion was ‘x’ and ‘2x’ where ‘x’ was equal to the sum total of all vegetation classes contained within the subregion.  Classification 20 was the most effective classification for northwest Mexico (see Figure 17).  Conabio’s maximum temperature and minimum temperature were used with Conabio’s precipitation (19-class), elevation, and slope at a .05-degree grid resolution and with the maximum scaled distance measure.

The regionally-available Conabio climatic data was used instead of the globally-available CRU climatic data because it was operationally easier to use the higher resolution Conabio data sets.  LoiczView’s current version disproportionally weighs relatively low or coarse resolution data sets when compared to higher resolution data sets making the resulting clusters very blocky and coarse.  However, using the globally-available CRU climatic data sets should not make a significant difference in the results of the LoiczView classifications (see Use of Higher vs. Lower Resolution Data Sets).  

Results of the 10-cluster classification showed that distributions of the four major vegetation classes of Pine Oak, Tropical Deciduous, Thorn, and Desert Scrub were well predicted.  Specifically, Thorn Forest was well predicted by Cluster 8 (with some over-prediction on the Gulf coast of the Baja peninsula), Desert Scrub by Clusters 3 and 9, Tropical Deciduous by Cluster 7, Pine Oak by Clusters 0, 4, 5, and 6, and Grassland by Cluster 1.  Notice that clusters are arbitrarily colored. 
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Figure 17: Classification 20 – A 10-cluster classification of northwest Mexico.  All clusters are arbitrarily colored and numbered for each LoiczView classification.

Classification 24 (see Figure 18) was the most effective classification for southwest Mexico.  It used Conabio’s maximum temperature, minimum temperature and precipitation (19-class) with elevation, and slope at a .05-degree grid resolution and with the maximum scaled distance measure.  Results of the 10-cluster classification showed distributions of Tropical Deciduous and Pine Oak Forests were well predicted.  Tropical Deciduous was well predicted by Clusters 0 and 1.  Pine Oak, represented by Clusters 2, 4, 6, 8, and 9, was also well predicted.  Interestingly, the Pine Oak distribution was separated into clusters representing coastal Pine Oak, Clusters 2 and 6, and interior Pine Oak, Clusters 4, 8, and 9.  The only region that did not cluster well was the circled area.  This region, a highly complex area of topography and vegetation characterized by volcanoes and valleys, was classified into one cluster (Cluster 5). 
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Figure 18: Classification 24 – A 10-cluster classification of south west Mexico.


    Identified area: Circle = Cluster 5.

Classification 26 (see Figure 19) was the most effective classification for northeast Mexico.  It used Conabio’s maximum temperature, minimum temperature and precipitation (19-class) with elevation, and slope at a .05-degree grid resolution and with the maximum scaled distance measure to produce a 12-cluster classification.  Results showed that Thorn forest was over-predicted on the Gulf coast by Clusters 3 and 7, and Grassland was over-predicted in areas such as the Southern Plateau and under-predicted in areas along the foothills of the Sierra Madre Occidental.  Pine Oak was well predicted by Clusters 4 and 6.  Desert Scrub was moderately well predicted but overall it was difficult to evaluate because so many clusters predicted its distribution, specifically, Clusters 0, 1, 8, 9, and 10.  Desert Scrub, the largest of the vegetation classes, encompassed such a large geographic area that it contained many different types of Desert Scrub species that were all grouped together into one ‘superclass’ called Desert Scrub.  Consequently, LoiczView created several clusters to represent the biological heterogeneity present in the environmental data.  Unfortunately, not all the clusters are as contiguous and easy to interpret as Cluster 1.
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Figure 19: Classification 26 – A 12-cluster classification of northeast Mexico.

Classification 28 (see Figure 20) was the most effective classification for southeast Mexico, although this region produced the least effective classification overall.  Conabio’s maximum temperature, minimum temperature and precipitation (19-class) were used with elevation, and slope at a .05-degree grid resolution and with the maximum scaled distance measure.  Results of the 12-cluster classification showed Tropical Sub-Deciduous was not predicted, probably, because it was too environmentally similar to Tropical Deciduous.  In fact, most of the Yucatan Peninsula was clustered into one vegetation class.  Tropical Deciduous did not differentiate from Tropical Sub-Deciduous or Tropical Rain Forest.  Thorn Forest was also not predicted.  Pine Oak was the best predicted vegetation type, represented by Clusters 1, 3, 7, and 8.  Tropical Rain Forest and Desert Scrub were only moderately well predicted.  The region around the circled area was very difficult to evaluate because almost every cluster occupied the region.

[image: image25.wmf]Source: 

Mosino, P. A. and E. Garcia (1974)


Figure 20: Classification 28 – A 12-cluster classification of southeast Mexico.

Identified area: Circle = Region around the Sierra Madre De Chiapas

and the Central Depression.
Classification 34 (see Figure 21) combined southwest and northwest Mexico into one classification for all of western Mexico.  Classification 34 proved to be the best prediction of Rzedowski’s Potential Vegetation Distribution.  Conabio’s maximum and minimum temperature and precipitation (19-class), were used with elevation, and slope at a .05-degree grid resolution and with the maximum scaled distance measure to produce a 12-cluster classification.  

Results showed that distributions of several major vegetation classes were well predicted, including Desert Scrub, Thorn Forest, Tropical Deciduous, and Pine Oak Forests.  Specifically, Thorn forest was well predicted by Cluster 5, Desert Scrub by Cluster 0, 2, and 8, Tropical Deciduous by Clusters 3 and 4, and Pine Oak by Clusters 1, 6, 7, 9, and 11.  Similar to Classification 28 (see Figure 20), Tropical Sub-Deciduous was not predicted.  The only weakness of the classification was that a large, interior ‘mystery cluster’ was produced that did not accurately represent any of the vegetation distribution present in the region (Cluster 10).  However, this ‘mystery cluster’ was no different than Cluster 5 produced in Classification 24 (see Figure 18).
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Figure 21: Classification 34 – The 12-cluster ‘best’ prediction of west Mexico.

Discussion

The most effective prediction for Rzedowski’s Potential Vegetation was realized when clustering Mexico by subregion.  Dividing Mexico into ecologically similar quadrants and halves improved the best proxies identified for the major vegetation classes.  Pine Oak, Tropical Deciduous, Thorn, and Desert Scrub were among the best predicted vegetation classes and Grassland and Tropical Rain Forest were among the worst.  Cloud Forest, Tropical Sub-Deciduous and Aquatic/ Sub-Aquatic were not predicted in any of the classifications.  The vegetation classes with significant elevation components, such as Pine Oak and Tropical Deciduous, were better predicted than vegetation classes without significant elevation components, such as Tropical Rain Forest and Desert Scrub. 

Vegetation distribution in west Mexico was by far the best predicted of the regional classifications.  Vegetation distribution in north Mexico was also well predicted but not as well predicted as the vegetation in west Mexico.  Southeast Mexico was, by far, the most difficult vegetation distribution to predict because it occupies the flat, Yucatan peninsula, is governed by a ‘moderate’ maritime climate, and is influenced by a complex, natural history.

Regional differences in the ability to predict vegetation distributions varied because of the parameters used in the classifications.  The environmental data, highly correlated to elevation, was more appropriate for prediction of vegetation with a significant elevation component.  Also, highly complex regions of vegetation, in terms of topography or natural history, might be better represented with different sets of environmental ‘predictor’ variables.  The maximum scale distance measure was probably more appropriate for prediction of vegetation characterized by more extreme environmental values such as vegetation endemic to areas characterized by high elevation, influenced by continental air masses or orography.

The vegetation classes with a higher number of species were represented by more clusters as compared to the vegetation classes with a fewer number of species.  For example, Desert Scrub, comprised of many different species of desert vegetation, is more species-rich than Pine Oak, comprised of only Pine and Oak species.  LoiczView produced several clusters to account for the overall species variation contained in Desert Scrub where as only one or two clusters accounted for the overall species variation contained within Pine Oak.  This was especially evident when classifying Desert Scrub in northern Mexico, Classification 18, where seven of the total twelve clusters identified the distribution of Desert Scrub.  Moreover, two of the seven clusters identified a geographically distinct subclass of Desert Scrub.  These two clusters predicted the Desert Scrub distribution located within the Sonoran deserts in northwest Mexico.  The other five clusters predicted the Desert Scrub distribution located within the Chihuahuan Desert in north central Mexico.

Figure 22 illustrates the ecoregions of Mexico as defined by Conabio (using topography and potential vegetation) (CONABIO’s EcoRegions of Mexico URL).  Interestingly, one of Conabio’s ecoregions corresponds almost exactly to one of the regions that proved difficult to correctly classify.  The ecoregion identified by Circle 1 corresponds almost exactly to Cluster 5 of Classification 24 (see Figure 18) or Cluster 10 of Classification 34 (see Figure 21).  This provides evidence that, although diverse in vegetation cover, the region has some ecological similarity, which LoiczView clustering identified.  Similarly, the ecoregions identified by Circles 2 and 3 correspond well to areas defined in Classification 24 (see Figure 18) that occupied area classified (see Figure 21) as coastal and interior Pine Oak Forests.

[image: image27.png]LoiczView 10-cluster Map

Conabio MaxTemp, Conabio MirTemp, Conabio Precip19, Hydro 1k elev, derived slope .05 degrees] [MSD] [Southwest Quadrant]

©CEONOMBEWN O





Source: (CONABIO’s EcoRegions of Mexico).

Figure 22: Distribution of CONABIO’S Ecoregions of Mexico.

Identified Areas: Circles 1, 2 and 3 = CONABIO’s Ecoregions.

Accuracy Assessment for LoiczView

Classifications were compared visually between current and previous classifications and to Rzedowski’s Potential Vegetation.  Classification 34 (see Figure 21), visually the best prediction of potential vegetation distribution, was assessed for accuracy using error matrices, user’s and producer’s accuracy, overall accuracy and the kappa statistic.  Classification 34 used Conabio’s maximum temperature and minimum temperature with Conabio’s precipitation (19-class), elevation, and slope at a .05-degree grid resolution and with the maximum scaled distance measure to produce a 12-cluster classification of west Mexico.

In Table 12, the error matrix shows the correspondence between the reference data or Rzedowski’s Potential Vegetation (columns) and the classed data or the 12-cluster LoiczView classification (rows).  Clusters were identified as specific vegetation classes by determining the vegetation class that occupied the most area within each cluster (i.e. the vegetation class with the greatest number of pixels).  Areas were then color-coded where red represented the dominant vegetation type within a class and orange and yellow were secondary vegetation types within a class.  

All clusters were dominated by one vegetation class, except for clusters 9 and 10.  Cluster 9 is a transitional cluster that represents a transitional area occupying the boundary between Pine Oak and Tropical Deciduous Forests.  Consequently, Cluster 9 was more difficult to assign a unique identity because it didn’t clearly belong to one vegetation class, although, it was identified as Pine Oak since Pine Oak had a slightly greater area as compared to Tropical Deciduous.  Cluster 9 seems to also correspond to one of Conabio’s Ecoregions defined in Figure 22 (see Circle 2).  Cluster 10, coined the ‘mystery cluster’, predicted equal parts of Pine Oak, Tropical Deciduous, and Grassland, although Pine Oak had a slighter greater area than the other vegetation types.

Table 12: Accuracy Assessment for Classification 34: A correspondence analysis

between Classification 34 and Rzedowski’s Potential Vegetation Distribution.
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The twelve clusters were then combined and numerically coded (arbitrarily numbered) to form the four major types of vegetation found within west Mexico, specifically, Pine Oak, Tropical Deciduous, Desert Scrub and Thorn Forest.  ‘Pecentage areas of a cluster being vegetation class x’ were then calculated in Table 13 to test whether each combined cluster was correctly identified as a specific vegetation class.  Two error matrices were produced with the recombined clusters or classed data (rows) and the reference data or Rzedowski’s Potential Vegetation (columns).  The error matrix in Table 14 was calculated without Cluster 10 (the ‘mystery cluster’ was later recoded as cluster 11).  The error matrix in Table 15 was calculated with Cluster 10 identified as Pine Oak Forest.

Table 13: Accuracy Assessment for Classification 34: An error matrix

Identifying the ‘% Area of a cluster being vegetation class X’
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Accuracy statistics for Table 14 shows Producer’s Accuracies vary from 87% for Desert Scrub and 84% for Pine Oak to 51% for Tropical Deciduous.  User’s Accuracies vary from 83% for Desert Scrub to 55% for Thorn Forest.  Overall accuracy was 71%.  Table 15 shows that Producer’s Accuracy varies from 86% for Pine Oak and 81% for Desert Scrub to 42% for Tropical Deciduous.  User’s Accuracy varied from 83% for Desert Scrub to 55% for both Pine Oak and Thorn Forests.  Overall accuracy was 64% with a Kappa statistic of 51%.

Table 14: Accuracy Assessment for Classification 34 without the ‘mystery cluster’: Producer’s, User’s and Overall Accuracies.  
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*Disregard ‘Run names’ on the top left of each error matrix.
Table 15: Accuracy Assessment for Classification 34 with the ‘mystery cluster’:

Producer’s, User’s and Overall Accuracies, and the Kappa Statistic.

[image: image31.png]Funfzmsa-Funfiessoon

FineDsk DesenSons
FineDsk TropDeo
FineDsko Thom
Fine0sk727

TiopDee Desertsansb
TiopDee Thom
TiopDec->Pineniak

Thoms DesantSeru
Thom: Tropee.

)
00
ot
£

)
[
55

fTorsCels

osesss
st
osios
oz
o
7t
ozresen
1T
o
oszarses
[

Fine0ak

Tiopiee.

Thom

LESS.-CONSERVATIVE
#Loss (Exinetion)

i Colonizator)

TotaChinge

a2
10078
ae

2606
015
61

536
010

ThomsPiatisk

DesantSens TropDee
DessnSorus Than
DesanSons 772
DesenSors Pinsisk.

27 esenSont
22 Pineak

o it
)

Tonishits

FunfSzmsa Funféoansishit]

FineDsk DesenSons
FineDsk TropDeo
FineDsko Thom
Fine0sk727

TiopDee Desertsansb
TiopDee Thom
TiopDec->Pineniak

Thoms DesantSeru
Thoms Troptec
Thom PrsDk

DesantSens TropDee
DessnSorus Than
DesanSons 772
DesenSors Pinsisk.

27 esenSont
22 Pineak

o it
)

Totshits

)
)

250
Ey

=

n
o

25

o

s
w

)
a0

3

ioazsss
o
onossesr
ozsarsz
ooesisse
i7is0ss
[
oser
oz
o
amaners
0

fTorsCels

oz
oseren
oosaionn
orsnenrs
o

o
otz
ossosee
nszazss
o
nsszans
omaraas
ooz
o
aosainn
oorrsses
o200
omears
o
o2z
e
o

asranass
[T

fotaShite  ofvegi.
csanais i
Tizanse
osees | 2asTores
sansaisz narss

o
sz
270ssase. nasss
seaanmg

o
oo eham
T assomr
Tneasies | nawzsess

o
oosss | oarasan
20w mneoss
ossssz | oo
sateeTT

o
o7 zn
sansaisz anaase

[T

fotaShite  ofvegi.

cammen [
srz
Lis2sts 2w
e

o

o
ierasezs agrman
[ st
s2smass i

o
e svmn
orsasens o
T

o
T
1sgsssse s
2z g2t
emmre | srarioss

o
ossmezs | 267
[

[0

Desansens

Fine0ak

Tiopiee.

Thom

Desansens

1964 dohangedFrOM 1210
10078 ToulfchangedFROM | 10078
19488 LozzofPinedsk 121

ot 1505
1015 1015
22050 aa
202 2
010 010
o1 a1
62 103
[ [
50620 24
22 251
o o
549265 53

A4xTotal Shitt bit Current &
Projected Less-Conservative.

CONSERVATIVE
£Loss (Exinetion)

i Colonizator)

659 dohangedrFiON 530
10078 ToulfchangedFROM | 10078
624054 LosoiPinesk 53
w s
1015 1015
212387 63
150 25
2010 200
9029 5
) 215
aaes [
219019 22
200 201
o o
626024 59

STotal Shitt bt Carrent &
Projected Conservative.

e

1567
aaes
20

st
o
s

TotaChinge

1169
10078
ne

o5
015
14

ars
200
s

5
[
55

50
o
22




In sum, several of the vegetation classes were well predicted.  Desert Scrub was the best predicted but Pine Oak, Tropical Deciduous and Thorn Forest were also well predicted.  A 10% degradation in accuracy for Tropical Deciduous (Producer’s Accuracy) and Pine Oak (User’s Accuracy) occurred when the ‘mystery cluster’ was included in the accuracy assessment.  The accuracy degraded for Tropical Deciduous because pixels were omitted (i.e. assigned to the ‘mystery cluster’ or Pine Oak) that should have been assigned to Tropical Deciduous.  The accuracy degraded for Pine Oak because pixels were included that did not belong to Pine Oak (i.e. should have been assigned to Tropical Deciduous and Grassland).  Overall accuracies were respectable with a 71% accuracy for the classification without the ‘mystery cluster’ and a 64% accuracy with the ‘mystery cluster’. 

Comparing Clustering Using LoiczView and Imagine

Results of the accuracy assessments for the best classifications of Rzedowski’s Potential Vegetation Distribution using ERDAS Imagine and LoiczView showed that the predictive ability of each vegetation model was slightly different (see Table 10 and Table 15).  Both models produced four vegetation types with Pine Oak, Tropical Deciduous and Desert Scrub common to both.  Different were Tropical Rain Forest produced by Imagine, and Thorn Forest produced by LoiczView.  Overall, accuracies were greater using LoiczView (except the Producer’s Accuracy for Desert Scrub and User’s Accuracy for Pine Oak).  Specifically, Producer’s Accuracies for LoiczView were 86% for Pine Oak, 42% for Tropical Deciduous, 81% for Desert Scrub, and 59% for Thorn Forest.  Producer’s Accuracies for Imagine were 75% for Pine Oak, 29% for Tropical Deciduous, 92% for Desert Scrub, and 89% for Tropical Rain Forest.  User’s Accuracies for LoiczView were 55% for Pine Oak, 68% for Tropical Deciduous, 83% for Desert Scrub, and 55% for Thorn Forest.  User’s Accuracies for Imagine were 57% for Pine Oak, 48% for Tropical Deciduous, 69% for Desert Scrub, and 48% for Tropical Rain Forest.  The overall accuracy was 64% and the Kappa statistic was 51% for LoiczView where as the overall accuracy was 62% and the Kappa statistic was 48% for Imagine.


Differences in the accuracies of each model probably exist because of the differences in clustering algorithms, distance measures, data sets, and the area classified.  Differences in the vegetation types produced by each model probably exist because of many of the same reasons, but the area classified is potentially the most important reason.  In the most effective classifications, data for all of Mexico were classified using Imagine, where as only data for western Mexico were classified using LoiczView.  Differences in vegetation types produced probably exist because of the vegetation classes that are present in each region.  In Classification 20 using Imagine all eight of Rzedowski’s potential vegetation classes are present, where as in Classification 34 using LoiczView, although all eight vegetation classes are present, four of the vegetation classes comprise the majority of the area (Pine Oak, Thorn Forest, Tropical Deciduous, and Desert Scrub).

Projecting Potential Vegetation Distribution

After LoiczView was used to derive a ‘best prediction’ for Rzedowski’s Potential Vegetation Distribution, the model was used to project ‘current’ potential vegetation distributions fifty years into the future under conditions of global climate change.  Projected vegetation distributions were produced by replacing current climatic data with future climatic data derived from projected climate scenarios using General Circulation Models (GCM’s).  Similar to Classification 34, LoiczView was used to produce a 12-cluster classification using elevation, and slope at a .05-degree grid resolution and with the maximum scaled distance measure.  In contrast, projected maximum temperature, minimum temperature, and precipitation were used instead of Conabio’s current maximum temperature, minimum temperature, and precipitation (19-class).  Two sets of projected climate data were used, one set a conservative scenario for projected climate assumed a 0.5% / annum CO2  increase and incorporated the negative forcing from sulfate aerosols, and the other set a less conservative or more extreme scenario for projected climate assumed a 1.0% / annum CO2  increase and did not incorporate the negative forcing from sulfate aerosols (see Projecting Potential Vegetation Distribution in Methods).

Identity between the current clusters and the projected conservative and less-conservative clusters was determined by geographic cluster matching and comparing archetype points or the geographic location of the most statistically characteristic value or point within a cluster (LoiczView URL).  Change maps were created that identify the specific change in vegetation class for each pixel between the current and projected classifications (see Figures 23 and 24) for the conservative and less-conservative climate scenarios.  Table 16 is a quantitative comparison between classifications and identifies the numerical change between current and projected vegetation distributions for each vegetation class and for the total change for all vegetation classes.

Table 16: Percent Shifts from Current to Projected Vegetation Distributions.
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  Figure 23 identifies the change in vegetation distribution from the current to the projected conservative climate change scenario.  Results showed that the most significant changes occurred with Tropical Deciduous, Pine Oak and Thorn Forests.  There was a 7% loss in the distribution of Tropical Deciduous.  6% of Pine Oak distribution was lost as was 5% of Thorn Forest and 2% of Desert Scrub.  There was a 13% net total change (% lost + % gain) in the distributions of Tropical Deciduous and Thorn Forests, as well as a 12% and a 6% net total change in distributions for Pine Oak and Desert Scrub, respectively.  The ‘mystery cluster’, denoted in Table 16 as ‘???’, was included in the change calculations but because of the difficulty in identifying the ‘mystery cluster’ as a specific vegetation class it will be excluded from the discussion.
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Figure 23: Change in Vegetation Distribution from Current to Projected

Conservative Climate Change Scenario.

The three largest shifts (as a % of the total shifts), from one vegetation type to another, were Pine Oak to Tropical Deciduous (17%), Tropical Deciduous to Thorn (11%), and Thorn to Desert Scrub (8%).  Pine Oak changed to Tropical Deciduous along the central and southern coastal mountain range, Tropical Deciduous changed to Thorn Forest along the transition between Pacific Coastal Plain and the foothills of the Sierra Madre Occidental, and Thorn Forest changed to Desert Scrub mostly along the Gulf side of the Baja Peninsula.

In contrast, Figure 24 identifies the change in vegetation distribution from the current to the projected less conservative climate change scenario.  Results showed a significant difference between the conservative and less conservative climate change scenarios.  The most significant changes occurred with Tropical Deciduous, Pine Oak and Thorn Forests.  There was a 23% loss in the distribution of Tropical Deciduous.  19% of Pine Oak distribution was lost as was 10% of Thorn Forest and 8% of Desert Scrub. There was a 54% net total change in the distribution of Tropical Deciduous, a 32% net total change in the distribution of Pine Oak, as well as a 20% and a 18% net total change in distributions for Desert Scrub and Thorn Forest, respectively.
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Figure 24: Change in Vegetation Distribution from Current to Projected

Less-Conservative Climate Change Scenario
The three largest shifts (as a % of the total shifts), from one vegetation type to another, were Pine Oak to Tropical Deciduous (33%), Desert Scrub to Pine Oak (12%), and Tropical Deciduous to Desert Scrub (12%).  A much larger percentage of Pine Oak changed to Tropical Deciduous relative to the other vegetation changes and compared to the vegetation distribution for the projected conservative climate scenario.  Pine Oak changed to Tropical Deciduous along the central and southern coastal and interior mountain ranges, Desert Scrub changed to Pine Oak along the northern most terminus of the Sierra Madre Occidental, and Tropical Deciduous changed to Desert Scrub along the western slopes of the northern Sierra Madre Occidental and some of the interior slopes and valleys of the central coastal range.  

The overall shift in distributions for all vegetation classes between the current and projected vegetation distributions was calculated by dividing the total number of shifts by the total number of cells.  There was a 5% shift in vegetation distribution between the current and the projected conservative climate change scenario as compared to a 14% shift in vegetation distribution between the current and the projected less conservative climate change scenario.  The differences in vegetation distributions between the conservative and less conservative climate change scenarios are identified in Figure 25.  The largest difference between the conservative and less conservative vegetation distributions is in the region of the central and southern coastal and interior mountain ranges identified as Pine Oak in the conservative scenario and Tropical Deciduous in the less conservative scenario.  The second largest difference between distributions is located in the western slopes of the northern Sierra Madre Occidental and some of the interior slopes and valleys of the central coastal range.  The conservative scenario identified the area as Tropical Deciduous and the less conservative scenario identified the area as Desert Scrub.  The third largest difference between distributions is along the northern most terminus of the Sierra Madre Occidental, which was identified by the conservative scenario as Desert Scrub and the less conservative scenario as Pine Oak.
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Figure 25: Difference in Vegetation Distribution between Projected Conservative and Projected Less-Conservative Climate Change Scenarios

CONCLUSIONS

1. A limited number of topographic and climatic variables can be used to predict at least some of the major classes of potential vegetation in Mexico. 

2. Replacing ‘current’ climate data with ‘projected’ climate data can be used to predict projected vegetation distributions.

3. Rzedowski’s classification for potential vegetation in Mexico, defined on the basis of expert judgement, appears to have some ecological significance because clustering identified several of Rzedowski’s major vegetation classes.

4. Comparisons between regional and global climatic data sets showed climate data resolution finer than 0.5 degrees did not significantly improve classification results, indicating that fine-scale control of vegetation prediction resides in the topographic data and that globally-available, climatic data sets can be successfully employed for such assessment.

5. Unique conditions of environmental variables that describe one vegetation type can be considered a ‘core’ region of vegetation; peripheral areas outside the core region described by slightly different environmental conditions that aren’t as unique as the environmental conditions that describe the core region should define peripheral regions, which may be (or become) zones of transition between adjacent vegetation types.  

6. Clustering techniques provide a powerful tool for both potential vegetation classification and the classification of core and peripheral regions for each vegetation type.  

7. Clustering within ecologically similar regions of landscape can improve potential vegetation classification.

8. Using the maximum scaled distance measure appears to better predict vegetation types characterized by environmental extremes.

9. Differences in results for classifying potential vegetation suggest that further study could improve both the methods developed and our understanding of the basis for expert classifications systems.

10. In view of promising results in developing quantitative links between environmental factors and habitat classification, the methods developed provide an additional approach to the problem of assessing the biogeographic effects of global change.

RECOMMENDATIONS FOR FURTHER STUDY


The following avenues of research have been identified as potentially fruitful for future development:

· Use of supervised clustering or some other approach that allows the user to better control how the clustering algorithm clusters familiar or calibration data points.

· Better use of LoiczView features such as optimal cluster algorithms and visualization capabilities including color-coded similarity analysis and dimensional viewing of clusters.
· Further investigation of the scale or resolution dependence of the classification with respect to different variables.

· Use of different variables for modeling vegetation distribution such as water budget, edaphic and geologic variables, and incorporation of variability and the seasonality component of climate.   
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		TropSubDec		0		149		1675
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Sheet1

		Vegetation Class Summaries (1 stnd. dev.)

		Vegetation Class 1: Coniferous and Oak Forest																Vegetation Class 2: Thorn Forest																Vegetation Class 3: Cloud Forest																Vegetation Class 4: Tropical Deciduous																Vegetation Class 5: Tropical Evergreen																Vegetation Class 6: Tropical Semideciduous																Vegetation Class 7: Desert Scrub																Vegetation Class 8: Grassland																Vegetation Class 9: Aquatic and Semi-Aquatic

		18 possible combinations of data (elev., precip., temp.)																5 possible combinations of data (elev., precip., temp.)																11 possible combinations of data (elev., precip., temp.)																7 possible combinations of data (elev., precip., temp.)																4 possible combinations of data (elev., precip., temp.)																2 possible combinations of data (elev., precip., temp.)																8 possible combinations of data (elev., precip., temp.)																5 possible combinations of data (elev., precip., temp.)																3 possible combinations of data (elev., precip., temp.)

		Most frequent combination = 4415, 8.59% [elev=2712, precip=700,temp=15]																Most frequent combination = 1324, 25.94% [elev=387, precip=500,temp=24]																Most frequent combination = 1824, 11.44% [elev=387, precip=2250,temp=24]																Most frequent combination = 1524 21.01% [elev=387, precip=1000,temp=24]																Most frequent combination = 1524 24.11% [elev=387, precip=1000,temp=24]																Most frequent combination = 1524 61.26% [elev=387, precip=1000,temp=24]																Most frequent combination = 2220 20.48% [elev=1162, precip=263,temp=20]																Most frequent combination = 3315 23.25% [elev=1937, precip=500,temp=15]																Most frequent combination = 1724 46.02% [elev=387, precip=1750,temp=24]

		Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature

		1937 = 8x = 35.55%				1000 = 5x = 23.28%				15 = 9x = 42.04%								387 = 5x = 69.88%				500 =2x = 32.33%				24 = 4x = 63.49%								1162 = 5x = 33.02%				2250 =4x = 33.34%				20 = 7x = 45.96%								387 = 3x = 35.82%				1000 =4x = 44.90%				24 = 4x = 47.40%								387 = 4x = 77.78%				1000 =1x = 24.11%				24 = 4x = 77.78%								387 = 2x = 81.45%				1000 =1x = 61.26%				24 = 2x = 81.45%								387 = 4x = 31.80%				263 =5x = 51.05%				20 = 4x = 46.35%								1937 = 3x = 43.14%				263 = 3x = 40.01%				15 = 3x = 56.16%								387 = 3x = 76.65%				1750 = 1x = 46.02%				24 = 3x = 76.65%

		1162 = 7x = 17.63%				700 = 4x = 21.20%				20 = 8x = 24.38%												263 = 1x =16.20%				20 = 1x = 6.39%								387 = 5x = 32.18%				1750 = 4x =25.22%				24 = 4x = 23.39%								1162 = 2x = 17.48%				700 = 2x =17.43%				20 = 3x = 21.77%												1350 = 1x =21.32%																1350 = 1x =20.19%												1162 = 2x = 25.29%				500 = 2x = 13.39%				24 = 2x = 15.01%								1162 = 2x = 27.08%				500 =2x = 30.21%				20 = 2x = 14.06%												1350 =1x = 20.51%

		2712 = 3x = 15.25%				500 = 4x = 14.18%				24 = 1x = 2.01%												1000 = 1x = 12.80%												1937 = 1x = 4.15%				3250 = 2x = 7.97%												1937 = 2x = 15.87%				1350 = 1x = 6.84%																1750 = 1x = 17.07%																												1937 = 2x = 15.37%				63 = 1x =8.06%				15 = 2x = 11.10%																												1000 = 1x = 10.12%

						1350 = 3x = 6.28%																700 = 1x = 8.55%																1350 = 1x = 2.82%																																2250 = 1x = 15.28%

						1750 = 1x = 1.84%

						263 = 1x = 1.64%

		annual maximum temperature (avg. 70 - 84) = 24.35 degrees																mean maximum annual temperature = 30.46 degrees																mean maximum annual temperature = 25.24 degrees																mean maximum annual temperature = 30.37 degrees																mean maximum annual temperature = 30.23 degrees																mean maximum annual temperature = 32.86 degrees

		annual minimum temperature (avg. 70 - 84) = 9.35 degrees																mean minimum annual temperature = 15.44 degrees																mean minimum annual temperature = 13.72 degrees																mean minimum annual temperature = 15.33 degrees																mean minimum annual temperature = 19.27 degrees																mean minimum annual temperature = 19.47 degrees																mean maximum annual temperature = 27.63 degrees																mean maximum annual temperature = 25.07 degrees																mean maximum annual temperature = 27.42 degrees

		annual mean temperature (avg. 70 - 84) = 16.87 degrees																mean mean annual temperature = 23.02 degrees																mean mean annual temperature = 20.10 degrees																mean mean annual temperature = 22.90 degrees																mean mean annual temperature = 25.06 degrees																mean mean annual temperature = 26.25 degrees																mean minimum annual temperature = 11.47 degrees																mean minimum annual temperature = 8.37 degrees																mean minimum annual temperature = 13.47 degrees

		annual precipitation (avg. 70 - 84) = 1047.34 mm																mean annual precipitation = 713.69 mm																mean annual precipitation = 1959.99 mm																mean annual precipitation = 948.05 mm																mean annual precipitation = 2182.61 mm																mean annual precipitation = 1391.51 mm																mean mean annual temperature = 19.41 degrees																mean mean annual temperature = 16.62 degrees																mean mean annual temperature = 20.38 degrees

		mean of maximum months of annual maximum temperature (avg. 70 - 84) = 28.73																maximum month of maximum temperature (avg. 70 - 84) = 35.86																maximum month of maximum temperature (avg. 70 - 84) = 29.89																maximum month of maximum temperature (avg. 70 - 84) = 34.55																maximum month of maximum temperature (avg. 70 - 84) = 34.79																maximum month of maximum temperature (avg. 70 - 84) = 35.99																mean annual precipitation = 457.92 mm																mean annual precipitation = 580.58 mm																mean annual precipitation = 1102.90 mm

		mean of minimum months of annual minimum temperature (avg. 70 - 84) = 4.53																minimum month of minimum temperature (avg. 70 - 84) = 8.83																minimum month of minimum temperature (avg. 70 - 84) = 10.56																minimum month of minimum temperature (avg. 70 - 84) = 10.53																minimum month of minimum temperature (avg. 70 - 84) = 15.53																minimum month of minimum temperature (avg. 70 - 84) = 15.79																maximum month of maximum temperature (avg. 70 - 84) = 33.81																maximum month of maximum temperature (avg. 70 - 84) = 30.91																maximum month of maximum temperature (avg. 70 - 84) = 30.66

																																																																																																		minimum month of minimum temperature (avg. 70 - 84) = 4.39																minimum month of minimum temperature (avg. 70 - 84) = 1.46																minimum month of minimum temperature (avg. 70 - 84) = 8.28

		Vegetation Class =						1		2		3		4		5		6		7		8		9

		# of combinations (1 stnd. dev.) =						18		5		11		7		4		2		8		5		3

		Mean # of combinations (1 stnd. dev.) = 7

				Most frequent combinations						mean maximum

		Veg Class		Elev.		Precip.		Temp.		annual temperature

		1		2712		700		15				24.35

		2		387		500		24				30.46

		3		387		2250		24				25.24

		4		387		1000		24				30.37

		5		387		1000		24				30.23

		6		387		1000		24				32.86

		7		1162		263		20				27.63

		8		1937		500		15				25.07

		9		387		1750		24				27.42

				Min T		Mean T		Max T		Mean P

		Veg1		9.35		16.87		24.35		1047.34

		Veg2		15.44		23.02		30.46		713.69

		Veg3		13.72		20.1		25.24		1959.99

		Veg4		15.33		22.9		30.37		948.05

		Veg5		19.27		25.06		30.23		2182.61

		Veg6		19.47		26.25		32.86		1391.51

		Veg7		11.47		19.41		27.63		457.92

		Veg8		8.37		16.62		25.07		580.58

		Veg9		13.47		20.38		27.42		1102.9

				Mean P						Frequency				Variation

		PineOak		1047.34				Veg1		13376		56966		0.1901566632		19.02%

		Thorn		713.69				Veg2		4182		66160		0.0594523898		5.90%

		Cloud		1959.99				Veg3		604		69738		0.0085866197		0.86%

		TropDec		948.05				Veg4		9705		60637		0.1379687811		13.80%

		TropRain		2182.61				Veg5		6763		63579		0.0961445509		9.60%

		TropSubDec		1391.51				Veg6		1956		68386		0.0278070001		2.70%

		DesertScrub		457.92				Veg7		27162		43180		0.386141992		38.60%

		Grassland		580.58				Veg8		5756		64586		0.0818287794		8.10%

		Aquatic/SubA.		1102.9				Veg9		838		69504		0.011913224		1.20%

										70342

				MinMonT		Min T		Mean T		Max T		MaxMonT

		Veg1		4.53		9.35		16.87		24.35		28.73

		Veg2		8.83		15.44		23.02		30.46		35.86

		Veg3		10.56		13.72		20.1		25.24		29.89

		Veg4		10.53		15.33		22.9		30.37		34.55

		Veg5		15.53		19.27		25.06		30.23		34.74

		Veg6		15.79		19.47		26.25		32.86		35.99

		Veg7		4.39		11.47		19.41		27.63		33.81

		Veg8		1.46		8.37		16.62		25.07		30.91

		Veg9		8.28		13.47		20.38		27.42		30.66

				MinElev		MeanElev		MaxElev

		PineOak		3		1782		3876

		Thorn		0		386		2397

		Cloud		0		1031		2884

		TropDec		0		975		2843

		TropRain		0		208		2400

		TropSubDec		0		149		1675

		DesertScrub		0		987		3357

		Grassland		0		1684		3482

		Aquatic/SubA.		0		335		3306
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Sheet1

		Vegetation Class Summaries (1 stnd. dev.)

		Vegetation Class 1: Coniferous and Oak Forest																Vegetation Class 2: Thorn Forest																Vegetation Class 3: Cloud Forest																Vegetation Class 4: Tropical Deciduous																Vegetation Class 5: Tropical Evergreen																Vegetation Class 6: Tropical Semideciduous																Vegetation Class 7: Desert Scrub																Vegetation Class 8: Grassland																Vegetation Class 9: Aquatic and Semi-Aquatic

		18 possible combinations of data (elev., precip., temp.)																5 possible combinations of data (elev., precip., temp.)																11 possible combinations of data (elev., precip., temp.)																7 possible combinations of data (elev., precip., temp.)																4 possible combinations of data (elev., precip., temp.)																2 possible combinations of data (elev., precip., temp.)																8 possible combinations of data (elev., precip., temp.)																5 possible combinations of data (elev., precip., temp.)																3 possible combinations of data (elev., precip., temp.)

		Most frequent combination = 4415, 8.59% [elev=2712, precip=700,temp=15]																Most frequent combination = 1324, 25.94% [elev=387, precip=500,temp=24]																Most frequent combination = 1824, 11.44% [elev=387, precip=2250,temp=24]																Most frequent combination = 1524 21.01% [elev=387, precip=1000,temp=24]																Most frequent combination = 1524 24.11% [elev=387, precip=1000,temp=24]																Most frequent combination = 1524 61.26% [elev=387, precip=1000,temp=24]																Most frequent combination = 2220 20.48% [elev=1162, precip=263,temp=20]																Most frequent combination = 3315 23.25% [elev=1937, precip=500,temp=15]																Most frequent combination = 1724 46.02% [elev=387, precip=1750,temp=24]

		Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature								Elevation				Precipitation				Temperature

		1937 = 8x = 35.55%				1000 = 5x = 23.28%				15 = 9x = 42.04%								387 = 5x = 69.88%				500 =2x = 32.33%				24 = 4x = 63.49%								1162 = 5x = 33.02%				2250 =4x = 33.34%				20 = 7x = 45.96%								387 = 3x = 35.82%				1000 =4x = 44.90%				24 = 4x = 47.40%								387 = 4x = 77.78%				1000 =1x = 24.11%				24 = 4x = 77.78%								387 = 2x = 81.45%				1000 =1x = 61.26%				24 = 2x = 81.45%								387 = 4x = 31.80%				263 =5x = 51.05%				20 = 4x = 46.35%								1937 = 3x = 43.14%				263 = 3x = 40.01%				15 = 3x = 56.16%								387 = 3x = 76.65%				1750 = 1x = 46.02%				24 = 3x = 76.65%

		1162 = 7x = 17.63%				700 = 4x = 21.20%				20 = 8x = 24.38%												263 = 1x =16.20%				20 = 1x = 6.39%								387 = 5x = 32.18%				1750 = 4x =25.22%				24 = 4x = 23.39%								1162 = 2x = 17.48%				700 = 2x =17.43%				20 = 3x = 21.77%												1350 = 1x =21.32%																1350 = 1x =20.19%												1162 = 2x = 25.29%				500 = 2x = 13.39%				24 = 2x = 15.01%								1162 = 2x = 27.08%				500 =2x = 30.21%				20 = 2x = 14.06%												1350 =1x = 20.51%

		2712 = 3x = 15.25%				500 = 4x = 14.18%				24 = 1x = 2.01%												1000 = 1x = 12.80%												1937 = 1x = 4.15%				3250 = 2x = 7.97%												1937 = 2x = 15.87%				1350 = 1x = 6.84%																1750 = 1x = 17.07%																												1937 = 2x = 15.37%				63 = 1x =8.06%				15 = 2x = 11.10%																												1000 = 1x = 10.12%

						1350 = 3x = 6.28%																700 = 1x = 8.55%																1350 = 1x = 2.82%																																2250 = 1x = 15.28%

						1750 = 1x = 1.84%

						263 = 1x = 1.64%

		annual maximum temperature (avg. 70 - 84) = 24.35 degrees																mean maximum annual temperature = 30.46 degrees																mean maximum annual temperature = 25.24 degrees																mean maximum annual temperature = 30.37 degrees																mean maximum annual temperature = 30.23 degrees																mean maximum annual temperature = 32.86 degrees

		annual minimum temperature (avg. 70 - 84) = 9.35 degrees																mean minimum annual temperature = 15.44 degrees																mean minimum annual temperature = 13.72 degrees																mean minimum annual temperature = 15.33 degrees																mean minimum annual temperature = 19.27 degrees																mean minimum annual temperature = 19.47 degrees																mean maximum annual temperature = 27.63 degrees																mean maximum annual temperature = 25.07 degrees																mean maximum annual temperature = 27.42 degrees

		annual mean temperature (avg. 70 - 84) = 16.87 degrees																mean mean annual temperature = 23.02 degrees																mean mean annual temperature = 20.10 degrees																mean mean annual temperature = 22.90 degrees																mean mean annual temperature = 25.06 degrees																mean mean annual temperature = 26.25 degrees																mean minimum annual temperature = 11.47 degrees																mean minimum annual temperature = 8.37 degrees																mean minimum annual temperature = 13.47 degrees

		annual precipitation (avg. 70 - 84) = 1047.34 mm																mean annual precipitation = 713.69 mm																mean annual precipitation = 1959.99 mm																mean annual precipitation = 948.05 mm																mean annual precipitation = 2182.61 mm																mean annual precipitation = 1391.51 mm																mean mean annual temperature = 19.41 degrees																mean mean annual temperature = 16.62 degrees																mean mean annual temperature = 20.38 degrees

		mean of maximum months of annual maximum temperature (avg. 70 - 84) = 28.73																maximum month of maximum temperature (avg. 70 - 84) = 35.86																maximum month of maximum temperature (avg. 70 - 84) = 29.89																maximum month of maximum temperature (avg. 70 - 84) = 34.55																maximum month of maximum temperature (avg. 70 - 84) = 34.79																maximum month of maximum temperature (avg. 70 - 84) = 35.99																mean annual precipitation = 457.92 mm																mean annual precipitation = 580.58 mm																mean annual precipitation = 1102.90 mm

		mean of minimum months of annual minimum temperature (avg. 70 - 84) = 4.53																minimum month of minimum temperature (avg. 70 - 84) = 8.83																minimum month of minimum temperature (avg. 70 - 84) = 10.56																minimum month of minimum temperature (avg. 70 - 84) = 10.53																minimum month of minimum temperature (avg. 70 - 84) = 15.53																minimum month of minimum temperature (avg. 70 - 84) = 15.79																maximum month of maximum temperature (avg. 70 - 84) = 33.81																maximum month of maximum temperature (avg. 70 - 84) = 30.91																maximum month of maximum temperature (avg. 70 - 84) = 30.66

																																																																																																		minimum month of minimum temperature (avg. 70 - 84) = 4.39																minimum month of minimum temperature (avg. 70 - 84) = 1.46																minimum month of minimum temperature (avg. 70 - 84) = 8.28

		Vegetation Class =						1		2		3		4		5		6		7		8		9

		# of combinations (1 stnd. dev.) =						18		5		11		7		4		2		8		5		3

		Mean # of combinations (1 stnd. dev.) = 7

				Most frequent combinations						mean maximum

		Veg Class		Elev.		Precip.		Temp.		annual temperature

		1		2712		700		15				24.35

		2		387		500		24				30.46

		3		387		2250		24				25.24

		4		387		1000		24				30.37

		5		387		1000		24				30.23

		6		387		1000		24				32.86

		7		1162		263		20				27.63

		8		1937		500		15				25.07

		9		387		1750		24				27.42

				Min T		Mean T		Max T		Mean P

		Veg1		9.35		16.87		24.35		1047.34

		Veg2		15.44		23.02		30.46		713.69

		Veg3		13.72		20.1		25.24		1959.99

		Veg4		15.33		22.9		30.37		948.05

		Veg5		19.27		25.06		30.23		2182.61

		Veg6		19.47		26.25		32.86		1391.51

		Veg7		11.47		19.41		27.63		457.92

		Veg8		8.37		16.62		25.07		580.58

		Veg9		13.47		20.38		27.42		1102.9

				Mean P						Frequency				Variation

		PineOak		1047.34				Veg1		13376		56966		0.1901566632		19.02%

		Thorn		713.69				Veg2		4182		66160		0.0594523898		5.90%

		Cloud		1959.99				Veg3		604		69738		0.0085866197		0.86%

		TropDec		948.05				Veg4		9705		60637		0.1379687811		13.80%

		TropRain		2182.61				Veg5		6763		63579		0.0961445509		9.60%

		TropSubDec		1391.51				Veg6		1956		68386		0.0278070001		2.70%

		DesertScrub		457.92				Veg7		27162		43180		0.386141992		38.60%

		Grassland		580.58				Veg8		5756		64586		0.0818287794		8.10%

		Aquatic/SubA.		1102.9				Veg9		838		69504		0.011913224		1.20%

										70342

				MinMonT		Min T		Mean T		Max T		MaxMonT

		Veg1		4.53		9.35		16.87		24.35		28.73

		Veg2		8.83		15.44		23.02		30.46		35.86

		Veg3		10.56		13.72		20.1		25.24		29.89

		Veg4		10.53		15.33		22.9		30.37		34.55

		Veg5		15.53		19.27		25.06		30.23		34.74

		Veg6		15.79		19.47		26.25		32.86		35.99

		Veg7		4.39		11.47		19.41		27.63		33.81

		Veg8		1.46		8.37		16.62		25.07		30.91

		Veg9		8.28		13.47		20.38		27.42		30.66

				MinElev		MeanElev		MaxElev

		PineOak		3		1782		3876

		Thorn		0		386		2397

		Cloud		0		1031		2884

		TropDec		0		975		2843

		TropRain		0		208		2400

		TropSubDec		0		149		1675

		DesertScrub		0		987		3357

		Grassland		0		1684		3482

		Aquatic/SubA.		0		335		3306
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