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Presentation Outline

Overview, unigue problems and lithofacies (Marty)
Petrophysical properties and relationships (Alan)
3D cellular model (Shane)

Initial simulations (Randy)

What's next
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Challenges and Key Points

Challenges:

Data volume (5200 sq miles, 2600 producers, 10,000+ wells) Automate & upscale
Direct measurements of Sw by logs is problematic (must usé property-based OGIP)

Free water level varies and not documented Automate Volumetric OGIP
Automate Automate

Some key points: And one more challenge:

1.  Thinly layered reservoir, moderate to low-
crossflow between zones (pressure data
indicates differential depletion)

Material balance GIP is problematic due to
lack good pressure data by zone.

SIP for commingled production is available, but
this represents the lowest possible SIP of the
most permeable of the commingled zones.

2. Matrix properties drive the system and
thin high perm layers may control flow



Avg. SIP (psig)

Why Model These Mature Reservoirs?
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SIP is actually pressure of

highest perm zone in

commingled production
Goals:
1. Functional comprehensive geologic and engineering models for simulation and

reservoir management

2. Resolve zonal differential depletion questions
3. Resolve question of continuity between two reservoir systems that are

regulated separately



Seven Sequences, Cotnci Grove, Panama Fel
Eight Lithofacies e
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Lithofacies classes and their depositional environment



Facies Stacking Patterns

- Migrating facies belts
response to rapid glacial-
eustatic SL fluctuation

- Facies vertically stacked
in predictable manner

- Sequences bounded by
exposure surfaces

7]
=l
=
[
©
3]
(1]

- Facies log response
predictable

- M-NM and Rel-Pos
Geologic Constraining
Variables helpful
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Predict lithofacies
at well scale with
Neural networks

- Select e-log predictor variables and
develop geologic constraining
variables

. Train N-Nets on core lithofacies

- Run N-Net models on 500 wells
and output facies curves in LAS
format ( )

L Middleburg

- Import lithofacies curves files into
geologic applications

Cottonwood

Depth (feet) below top Council Grove

Single Layer Neural Network
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Measuring error In test set predictions

Core Lithofacies 6-8 and
Predicted Lithofacies 6-8
(Used PE when available)
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Panoma Stratigraphic X-Sec
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Property-based OGIP

OGIP (property-based) is good early
test of facies predicition, k-phi-Sw
transforms and Phi correction.

Vol OGIPa & Cum Production

Keystone Wells, Council Grove
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Using "best guess” FWL based on anecdotal
data (perforations, tests, lowest producing
perfs) and Pippin (1985). Cum gas is ~ 80%
ERU.

Sw = f (facies unique properties, Phi, FWL)
OGIP =1 (Sw,P, T, Z, Phi)
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Estimating free water level
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HAMILTON

Cum Gas by Section 2002
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“Fault” map overlay

Related
to minor
faulting?

Ratio is relative
to FWL

FWL can be
back-calculated
by est. OGIPmb
and solving for
FWL.
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Permeability

Permeability vs Porosity
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300° Above Capillary Pressure

Free Water

Capillary Pressure Curves Pkst/Pkst-Grainstone

Capillary Pressure Curves by Facies (Porosity = 4-18%)
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Gas and Water Relative Permeability
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Building the Structural Framework

Import wells with tops and logs Building the Structural Framework

| Define ¢
contain log data Interest

10,840 wells with tops only (no logs) Construct top horizon for Council

527 wells with tops, predicted facies Grove (A1_SH) top
curves, “probability” curves, and Create isochore for each zone, and
porosity curves hang isochores from top horizon

(Facies from two Nnet models, 352 with PE Generate layers (define cell thickness)
and 175 without PE)




Model Architecture

Cells in model

5,200 square mile model

7 Models (one per cycle)

Average model 8.6 million

Maximum 15 million (C cycle)

Minimum 5.7 million (B2 cycle)

Layers per Model

"Dummy"
12
12
12
12
12
12
12

Total
76
47
39
47
47
54
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Panoma Facies Modeling

Facies Model
» Up-scaled predicted facies to fit layering
» Biased facies trends based on what we

%ﬁ know about the geology of the system
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48

» Populated cells in between wells
(Sequential Gaussian Indicator)




Facies “Biasing”
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Panoma Petrophysical Modeling

Phst/ Phst Gmat

‘ikst / Wikt Phst

NM Shaly Silt

Petrophysical

Models
»Up-scaled
porosity curve to
fit layering and

generated porosity g#=—

model

Permeability in Facies 8, A1 LM

Permeability
Al LM

»Used perm
facies transforms
and porosity
values in cells to
generate
permeability
model



Upscale to Dynamic Model
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Initial Simulation; single well

. . ALEXANDER D2 - panomA
We have just begun the transition
A BHP/Z

from a static model to the simulator, A
Beginning at the single well level.

Pressure
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Core facies
at single well

ZALEXANDER D
Py

GR||Facies

Initial dynamic models

Three Runs
1. Upscaled from well
2. GeoModel, Rate Specified

3. Geomodel, Pressure
Specified

Perm, Layer 1

Upscaled permeability from static model
(map view layer 1)

Parameters

e 640 Acre Section

« Cell Size: 390’ X 415’
Layers:

» Upscale from well — 6
Geomodel — 41 (from 327)

Well Location:; Center
0.6’ X 315’ Fracture
100 Year Run

Sw 30 %
BHPi 260 psia
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» Rate specified decline
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1.

3.

Summary; What’s next?

Many obstacles overcome by effort and automation.

. Upscaling to more manageable model size for larger

scale simulations (9, 81 wells).

Devise methodology to simulate on even larger scales.

On to the Chase (Hugoton) and into OK Panhandle
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