4-D High-Resolution Seismic Reflection Monitoring of Miscible CO₂ Injected into a Carbonate Reservoir

Abstract

This three-phase 4-D seismic program includes up to twelve sequential 3-D surveys designed to provide a time lapse map of carbon dioxide (CO₂) movement during and containment after its injection into a carbonate reservoir. The primary objective is to improve the understanding of fluid-flow paths, reservoir architecture, reservoir properties, CO₂ movement, CO₂ containment, and post-injection CO₂ stability of a 15-acre CO₂ miscible flood in the Lansing-Kansas City Formation, central Kansas, beginning in Spring 2003 under the U.S. DOE Class Revisit Program (Project #DE-AC26-00BC15124). Sequential images obtained before, during, and after the flood will improve understanding of the flood process and potentially aid in flood management for this and other miscible floods.

Also, these data will be studied for: 1) efficient approaches to use of high-resolution, minimal deployment 4-D seismic monitoring in enhanced oil recovery programs; 2) feasibility of high-resolution imaging of a single pay zone in a succession of cyclic carbonate units; 3) effectiveness of 4-D seismic monitoring in interpreting rock properties that influence flood performance; 4) usefulness of 2-D, 2-component (2-C) shear wave seismic as a complement to 3-D P-wave imaging; 5) use of synthetic seismograms, correlated to real data, for improvement of flooding programs; 6) time-lapse seismic’s potential to provide assurance of CO₂ containment; and 7) the potential to monitor long-term CO₂ stability.
4-D High-Resolution Seismic Reflection Monitoring of Miscible CO₂ Injected into a Carbonate Reservoir

This proposal contains no proprietary information.

Goals and Objectives

The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in a oil field before, during, and after the miscible carbon dioxide (CO₂) flood that is beginning in Spring 2003 as part of the DOE-sponsored Class Revisit Project (DOE #DE-AC26-00BC15124). Unique and key to this proposed imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900 m deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time (Watney, 1980, 1995).

Three-dimensional seismic delineation of the movement of a miscible CO₂ floodbank through a petroleum reservoir allows identification of reservoir heterogeneity and in some situations their relationship to specific rock properties influencing sweep uniformity and the post-sweep distribution of CO₂ in the reservoir. By spatially correlating key reservoir properties, such as porosity and permeability, with unique combinations of seismic attributes, reservoir simulation models can be optimally refined and the improved understanding of the on-going flood used to improve flood management and optimize performance. Questions such as: “Where is the injected CO₂ going?” “What is the sweep efficiency?” “Are there any areas with bypassed oil?” “How can the injection and production program be improved in real time to optimize the sweep or recovery?” may be answerable while the enhanced recovery process is underway. Such questions need to be answered during the critical time between initially pressuring the reservoir with water and the eventual CO₂ “breakthrough” at producing wells. In addition, questions concerning use of hydrocarbon reservoirs for carbon dioxide sequestration can be addressed. Questions such as: “Is CO₂ moving outside the pattern?” “How does the CO₂ in the reservoir change with time?” “Is CO₂ migrating into overlying beds and how much is moving?” “Does seismic provide a viable monitoring tool for CO₂ sequestration and containment?”

This 15-acre miscible CO₂ flood involves three production wells, two water injectors, and one CO₂ injector (Dubois et al., 2001) (Figure 1). The present reservoir simulation model for the flood area predicts slightly enhanced sweep to the #12 and #16 wells. Repeated 3-D seismic surveys may permit direct observation of the effectiveness of CO₂ containment in the flood pattern area and the geometry of the front as it moves through the reservoir. Since the flood containment is influenced and, to some degree, controlled by injection rates in the #10 and #18, and production rates in the #12, #16, and #13, observations of unplanned movement may be controlled by altering injection and production rates. This seismic program will potentially provide a unique, extremely valuable real-time assessment of CO₂ flood sweep and also an opportunity to evaluate reservoir model simulation performance at a resolution never before obtained.
The seismic data will be used to directly observe and map the distribution of CO$_2$ saturation in the reservoir fluids and to monitor changes in saturation over the planned two to four years of CO$_2$ injection. These time-lapse images will allow appraisal of sweep efficiency and the identification of areas of bypassed oil with unprecedented accuracy. In contrast, conventional reservoir simulations of the saturation distribution both before and after flooding are based on reservoir properties estimated from cores, well performance, and history matching, which are limited in predictive accuracy for the properties of inter-well regions. Recent use of conventional 3-D, 3-C technologies to study CO$_2$ floods show great potential but lack the resolution, sampling frequency, and cost effectiveness necessary for downstream enhancement of oil recovery schemes during CO$_2$ injection in conventionally depleted reservoirs.

Using successive 3-D seismic surveys to monitor the progress of a flood front sweep through the reservoir will provide a detailed spatially and temporally continuous characterization (a true 4-D survey) that will permit progressive dynamic adjustments to the injection and production scheme. The 4-D survey also will provide a unique opportunity to investigate and assess dynamic flood schemes that try to compensate for non-uniform changes in fluid saturation and/or pressure. By incorporating successive seismically-based maps of lateral variation and fluid saturation and interpretations of permeability into the reservoir simulator, the injection scheme can be modified dynamically to achieve an optimal sweep of the oil reservoir. Without seismic monitoring, sweep effectiveness and reservoir heterogeneity cannot be assessed until “break-through,” when the opportunity to perform fluid steering through modified injection and production schemes is more limited.

The viability of using seismic data to image and monitor CO$_2$ containment is enhanced by the phase properties of CO$_2$ for the conditions of this reservoir. In the flood pattern, the CO$_2$ is at pressures generally greater than 1,100 to 1,400 psi. At these pressures, and at the existing

Figure 1. Map showing 15-acre flood pattern for the DOE-sponsored CO$_2$ miscible flood in the Hall-Gurney Field.
reservoir temperature, the CO$_2$ exhibits a density ranging from 0.3-0.7 g/cm3. If CO$_2$ leaves the pattern area, either horizontally or vertically, it will decrease to pressures generally less than 700 psi. At these lower pressures the density of CO$_2$ decreases substantially to below 0.1 g/cm3. At temperatures below 80ºF the CO$_2$ enters a 2-phase region and exists as both a gas and a liquid. These marked changes in density would provide enhanced impedance contrast and consequently would elevate the seismic amplitude (“bright spot”) response to the presence of CO$_2$. In effect, CO$_2$ leaving the pattern either horizontally or vertically into overlying beds is markedly more visible than CO$_2$ in the pattern. Since production of this reservoir will be halted once the CO$_2$ flood is complete, reservoir pressures will decrease and therefore CO$_2$ densities will also decrease, enhancing the seismic signature and detectability of CO$_2$ increase. Time-lapse seismic imaging will be extremely sensitive to any movement of physical changes in the CO$_2$ remaining in the reservoir can be effectively monitored seismically to identify and characterize changes through time.

Evaluating optimal approaches of 4-D seismic as a suitable and cost-effective tool for routine monitoring of injection schemes on small, low-budget EOR projects and in lower yield, mature reservoirs is an important secondary goal of this project. Efficient sweeping of all oil from a reservoir and tracking and accounting for injected CO$_2$ requires high-density spatial imaging of reservoir properties. Using real-time images of fluid and contaminant movement in reservoirs, dynamic injection and recovery schemes could be designed and continuously updated using reservoir simulations based on 4-D seismic data, existing well data, and new wells optimally located during flooding that dramatically increases the cost benefit of injection programs in mature and small fields.

For 4-D seismic to be economic on small floods and where multiple 3-D surveys within the injection and production periods will be necessary, the cost of data acquisition and processing must be minimized without compromising resolution. This cost cutting requires a non-conventional approach using low-cost seismic systems that produce extremely consistent, high-resolution data in a rapid fashion. The methodology must be of sufficiently high resolution to discretely resolve CO$_2$ movement through very thin intervals and allow differentiation of CO$_2$ that has moved outside the trapping formation.

The Lansing-Kansas City reservoir at the demonstration site is only 4 m thick with the most productive interval at the top of the reservoir being about 2 m thick, requiring dominant frequencies to exceed 150 Hz to resolve the top and bottom of the 4 m thick pay zone (Gochioco 1991; Miller et al., 1995). If these frequencies can be achieved and consistently recorded, the 4-D characterization of the reservoir at the necessary spatial scale for direct detection can be achieved. As well, if the CO$_2$ moves outside the flood area, pressure drops and associated decreases in density will result in extreme amplitude anomalies (bright spots) that should be readily observable.

Background and Current State of Knowledge

Seismic characterization of fluids in a reservoir during production relies on changes in bulk density and bulk modulus of the rock as the native pore fluids are displaced or altered. Temporal variations in seismic attributes (such as instantaneous amplitude, instantaneous phase, instantaneous frequency, coherency, and impedance) as small as a few percent may indicate
changes in pore fluid composition or fluid flow (White, 1991). Localized absence of changes in attributes between surveys may indicate underswept zones and stranded reserves (Sigit et al., 1999). Vertical and areal differences and distribution of important reservoir properties (porosity, permeability, and fluid composition) should be mappable within the horizontal limits of the survey by correlating different seismic attributes to reservoir properties. Such “attribute correlations” have proven effective in detecting changes in fluid saturation, pressures, and temperature, even using data not optimized for 4-D analysis (Johnston et al., 1998, Lumley et al., 2000; Davis et al., 2001; Anderson et al., 1998; He et al., 1998). With the relative newness of 4-D technologies, many baseline 3-D surveys used for 4-D analysis are legacy data (Johnston et al., 2000) and are not optimized for comparisons and reservoir analysis using the most effective differencing techniques.

Time-lapse 3-D (or 4-D) seismic reflection profiling has been effectively used during the last decade (Ebrom et al., 1998), to monitor conventional enhanced oil recovery (EOR) programs (Huang et al., 1998; Rogno et al., 1999; Gabriels et al., 1999; Lumley, 1995). Maintaining consistency and repeatability in acquisition and processing has been the most persistently identified problem associated with time-lapse seismic monitoring of reservoir production (Huang and Will, 2000; Druzhinin and MacBeth, 2001; Meunier and Huguet, 1998; Nivlet et al., 2001; Li et al., 2001). Distinguishing between changes in seismic characteristics that result from temporal variation in near-surface properties and changes occurring in reservoir intervals as a result of flooding remains a significant problem. Cross-equalization techniques have proven to be a most effective tool in reducing the impact of near-surface variations on amplitude, phase, arrival time (static), and spectral properties (Huang and Will, 2000; Druzhinin and MacBeth, 2001; Meunier and Huguet, 1998). The potential of multiple (>2 per EOR or CO₂ sequestration program) 3-D surveys to better differentiate changes in near-surface conditions from changes in reservoir fluids has not been evaluated.

To date, 3-D surveys monitoring changes in reservoir properties after the injection of miscible CO₂ have consisted of a baseline survey and a post- or late-production survey only (Terrell et al., 2002; Acuna and Davis, 2001; Chapman et al., 2000; Harris et al., 1996). Such sparse sampling is inadequate to support true 4-D investigations. If only two surveys have been run in the time domain, all changes observed in the reservoir must be assumed to have occurred linearly, at a constant rate through both time and space. This is assuredly an oversimplification that may result in erroneous predictions. Even if the fluid phenomena being investigated behaved linearly in time and space (an unlikely circumstance), two time-slices would not permit assessment of the uncertainty in either the rate of change with time at fixed locations or the rate of spatial change between locations. At least four 3-D surveys, separated by time, are required to achieve the minimum degrees of freedom to assess temporal changes, and additional surveys will provide more detailed information.

EOR techniques must be developed to recover oil from the large number of Class II reservoirs in the mid-continent that retain bypassed or trapped oil after water flooding. As part of a “Class II Revisit” program funded by DOE, a 15-acre CO₂ miscible flood pilot study has been designed to demonstrate the technical feasibility and economic viability of miscible EOR in a representative Lansing-Kansas City oomoldic limestone shallow-shelf carbonate reservoir. Details about this 6-year pilot project funded by the Department of Energy, Kansas Geological
Monitoring CO₂ floods in carbonate reservoirs with conventional 3-D land seismic has been moderately successful within the last half decade (Harris et al., 1996; Brown et al., 2002; Duranti et al., 2000). The Reservoir Characterization Group (RCG) at Colorado School of Mines has studied and reported on two of the best known projects (Vacuum Field, New Mexico, and Weyburn Field, Saskatchewan). Anomalies in S-wave anisotropy and P-wave reflection amplitude, interpreted from time-lapse, multi-component, 3-D data and reservoir production data, correlate with fluid composition and pore pressure changes associated with CO₂ injection programs (Duranti, 2001; Herawati, 2002). In both these studies a baseline survey was acquired with a follow-up survey acquired approximately one year later still during injection or mid-injection/recovery. Those EOR projects provided key insight into the economics, efficiency, and information necessary for seismic monitoring of similar CO₂ floods.

Preferential migration of CO₂ within a producing zone, whether along fractures or associated with depositional features, appears to be mappable using seismic attributes and energy modes appropriate for the formation characteristics. Shear wave splitting and anisotropy appear sensitive to changes in stresses of fractured permeable reservoirs after CO₂ injection (Cabrera-Garzón et al., 2000). In less permeable intervals (exhibiting lower fracture density) and below parting pressures, changes in compressional wave impedance volumes seem to be sensitive to and indicative of CO₂ moving through the reservoir (Terrell et al., 2002). Lateral and vertical changes in fracture densities and orientations consistent with the local stress field were interpreted from observations of changes in shear wave anisotropy after the injection of CO₂ at Vacuum Field in New Mexico (Pranter et al., 2000). Premature breakthrough at a producing well during the Weyburn Field EOR program studied by the RCG was interpreted from impedance volumes as “fingering” of the CO₂ along more permeable channels (Brown et al., 2002). Neither field behavior was expected or predicted based on pre-flood data.

Unexpected spatial irregularities in reservoir characteristics revealed by 3-D seismic presented challenges at the CO₂ flood of the Vacuum Field in New Mexico that required the development of a new reservoir model incorporating faults and fractures in the San Andres reservoir carbonates (Roche, 2000). A 4-D seismic survey showed faulting and fracturing previously not considered significant, as major influences on compartmentalization and non-uniform production of oil from this field.

The 4-D, 3-C monitoring of the Weyburn Field CO₂ flood in the Williston Basin of Saskatchewan, Canada, revealed geologic and reservoir characteristics similar to what is expected at the Kansas Hall-Gurney Field demonstration site (Terrell et al., 2002; Herawati, 2002; Byrnes, 2000). Both fields are mature and have undergone extensive water flooding prior to CO₂ floods. Both geologic settings can be characterized as shallow carbonate shelf deposits with pay zones averaging around 4 m thick, several cyclic intervals of varying thickness within the pay zone, and decreasing permeability and porosity from top to bottom of the producing zone. The best production intervals in each field possess relatively high permeabilities (over 100 md for the Weyburn Field and just over 200 md for the Hall-Gurney Field) and high porosities (about 38% for the Weyburn Field and 28% for Hall-Gurney Field).
Neither Hall-Gurney nor Weyburn fields have a dominant fracture component that would lend itself to tracking the movement of CO\textsubscript{2} by observing changes in shear wave anisotropy and/or birefringence as was the case at Vacuum Field in New Mexico. Permeability in the Vacuum Field reservoir study can be characterized as predominantly fracture controlled. The Weyburn Field has some interaction between matrix porosity and fractures, but not nearly to the degree observed at Vacuum Field. There is no documentation indicating a relationship between porosity and fractures in the Hall-Gurney Field.

Contrasting these fields in this fashion and considering the seismic configuration that was most successful in tracking CO\textsubscript{2} floods at Weyburn and Vacuum, it is reasonable to expect changes of 20% or more in 4-D compressional wave impedance volumes as the miscible bank moves across the pattern area during the first two years of the planned CO\textsubscript{2} flood at Hall-Gurney (Terrell et al., 2002). However, as discovered at Vacuum Field, shear wave imaging has the potential to uncover unknown and unexpected reservoir characteristics (Davis and Benson, 2001). Findings from this seismic study of the Hall-Gurney CO\textsubscript{2} injection project can be contrasted and compared with CO\textsubscript{2} sequestration research currently active in association with the Weyburn storage and monitoring project (Pedersen et al., 2003; Khan and Rostron, 2003).

Dynamic seismic response due to reservoir production processes provides insights into the permeability structure of the reservoir (Talley et al., 1998). As seismic data track the CO\textsubscript{2} front in three dimensions, lag areas can be identified and physical properties refined for these areas so that the model can be updated, thereby allowing the enhancement of reservoir simulation models and potentially, temporally tailored mid-flood adjustments can be made to the water injection and fluid production program.

CO\textsubscript{2} sequestration in aquifers and depleted oil reservoirs, and residual CO\textsubscript{2} remaining as a byproduct of oil recovery programs needs to be reliably monitored during injection and while dormant during storage (Guo et al., 2002; Bachu, 2001; Nihei et al., 2001). Currently pressure build-up and fall-off in wells is the most common method of monitoring CO\textsubscript{2} injection (Benson, 2001). Movement of CO\textsubscript{2} outside geologic traps is a major concern and obstacle to the acceptance and widespread use of CO\textsubscript{2} sequestration (Guo et al., 2002). Time-lapse seismic is sensitive to changes in the imaged volume and could be quantified sufficiently to provide the necessary transport and fate assurances.

The inherent spatial resolution of a reflection seismic survey, even as dense a survey as the one proposed here, can be no greater than the spacing between subsurface sample points. This spacing is much larger than that required by a typical reservoir fluid-flow simulator, so the seismic data must be scaled down to match the simulator’s requirements. Because the incorporation of successive surveys separated by time allows the use of prior information to refine subsequent estimates, a geostatistical procedure with Bayesian components is appropriate for decreasing the sampled volumes and thereby substantially increasing the number of sample points, an approach referred to as “Bayesian maximum entropy” or BME estimation (Christakos, 2000).

Beyond its use for monitoring the upcoming CO\textsubscript{2} flood at the Hall-Gurney Field demonstration site, high-resolution time-lapse 3-D seismic techniques need to be developed that are streamlined, focused, and cost effective in tracking the progress of any size flood (Houston and Kinsland, 1998) or monitoring subsurface CO\textsubscript{2} sequestration sites. Conventional 3-D seismic
has not proved to be a cost-effective tool for most operators trying to extend smaller fields or to capture trapped or stranded reserves on the flanks of or even within mature reservoirs. Conventional approaches to 3-D surveying will not likely meet the economic or resolution requirements of “routine” CO₂ sequestration containment assurances (Bachu, 2001, Nihei et al., 2001; Hoversten et al., 2001). Innovative approaches to and adaptation of high-resolution seismic imaging will be necessary for seismic imaging to become the cost-effective tool necessary for monitoring CO₂ floods or disposal.

Anticipated Impact and Potential for Success

Successful 4-D monitoring of a multi-year EOR program will reveal reservoir properties, fluid-flow behavior, and sweep efficiency, and identify unswept areas that contain stranded or bypassed oil as well as identify any CO₂ that has escaped containment within the flood area. On-going imaging of the flood and resulting changes to the interpreted reservoir properties will allow refinement of the reservoir simulations and the ability to test different injection and production programs to maximize recovery and compensate for flow heterogeneities. Changes in the injection scheme can optimize the material balance and retain better control of the CO₂ inventory. Production can be enhanced while a flood is in progress, modifications in well patterns made, or new production or injection wells drilled to tap previously isolated portions of a reservoir.

Analyzing the effectiveness of sweep in real time allows minor adjustments to be made to injection pressures, volumes, and recovery/injection wells. These changes may reduce the duration of the flood, increase the uniformity of the flood, and improve the design of conformance control programs such as water-alternating-gas (WAG) programs.

Efficient design and implementation of 4-D monitoring of EOR programs could significantly increase the recovery of petroleum, especially from fields with marginally economic quantities of remaining oil in place. Of the original oil in place (OOIP), approximately 30-40% is trapped by water flooding and is subsequently only recoverable using an enhanced technology, such as CO₂ miscible flooding. The remaining 60-70% of the OOIP is potentially recoverable, but in many reservoirs typically only 30% is produced even after EOR programs. The remaining 30% of potentially recoverable OOIP is either isolated from the wellbore by reservoir heterogeneity or bypassed as a result of the production program employed. These known but unrecovered reserves represent a significant potential asset (Nur, 1997).

The significant phase changes that CO₂ will undergo if it leaves the high-pressure flood pattern either horizontally (into the lower-pressure surrounding area) or vertically (into overlying intervals), will increase the acoustic (reflectivity) contrast and therefore highlight any CO₂ leaving the pattern. CO₂ becomes progressively more seismically visible as the density drops, with the pressure gradient expected at the edge of the pattern the reflectivity will dramatically increase with minimal distance from the pattern. Any CO₂ moving outside the pattern will be seismically detected as a high amplitude anomaly or bright spot. Testing and confirmation of this technology as an effective tool for monitoring CO₂ sequestration may eventually provide the verification tool necessary for this application.
Extending compressional wave 3-D seismic imaging to include the two shear wave components provides additional information about rock properties but often comes at an unacceptably high cost. Data acquisition equipment and procedures unique to shear wave reflection seismology can increase the cost of a geophysics program from 2 to 10 times depending on the geology. The extra costs of processing (e.g., dependence and sensitivity) and acquiring (e.g., multi-component sources and receivers, double or tripling the number of recording channels) shear wave data and other technologically advanced and expensive aspects of a well-orchestrated 3-C monitoring program may exceed the cost benefit for most smaller fields in the U.S.

EOR programs in small, mature fields can be made cost effective by avoiding full 4-D, 3-C surveys. Seismic monitoring and development of scaled-down designs incorporating optimally designed time-lapse 3-D compressional surveys with smaller well-formulated and targeted 2-D, 2-C shear wave surveys can be effectively and efficiently used for mapping flood dynamics. Amplitude differencing of compressional wave volumes should be extremely diagnostic of CO₂ escape into lower pressure units or CO₂ moving outside the pressured reservoir, foregoing the need for shear wave imaging altogether on sequestration projects (Zweigel et al., 2001; Yuh et al., 2000).

Successfully accomplishing some of the objectives/goals of this program is almost assured. Resolution potential, signal-to-noise, and penetration depths have already been estimated from walkaway tests previously conducted by the KGS at this site during the summer of 2002 (Figure 2). Test data were acquired under what is anticipated to be the worst near-surface and surface conditions that will be encountered at this site (extremely dry near-surface, all

![Correlated and spectral balanced single sweep vibroseis shot gathers from the Hall-Gurney Field near Russell, Kansas. Upper 300 m have excellent high frequency reflection from Stone Corral Anhydrite (A). Reflections from the interval of interest* are around 600 ms (B). Wind and power line noise and extremely loose, dry surface make these the lowest quality records expected.](image)
recovery wells pumping, moderate to high winds [50-60 km/hr gusts], and seismic lines parallel and beneath electric transmission lines).

Integrated with standard reservoir data these seismic results will provide field engineers snapshots of fluid movement through the reservoir along preferential flow paths. Development of more accurate and precise reservoir models will likely come from the seismic data and could be the basis for refined injection schemes. Lessons learned and techniques developed will be strong contributors to both timing and deployment approaches for future optimized seismic monitoring surveys. As well, minimal deployment 3-D for field enhancement has been needed and requested by independent oil producers for decades. Findings from these high-resolution 3-D surveys (shallow by conventional standards) will be instrumental in developing approaches to 3-D seismic surveying that extend the production of small fields by identifying areas that might contain bypassed oil.

Improving recovery methods will extend the economic life of many reservoirs. A critical component for managing reservoir performance is offered by time-lapse seismology. If the use of repeated, three-dimensional, seismic surveys can delineate changes in bulk properties over time due to reservoir processes, then a multidisciplinary reservoir management team can estimate the pressures, saturation, and fluid movements within the permeability structure of the reservoir, thereby improving recovery performance and economics.

Technical Approach / General Plan

Scope of Work

Contingent upon the successful completion of final negotiations between the partners of the CO₂ pilot study at the Hall-Gurney Field, permits and access agreements must be secured for the 810 shot points and 240 receiver stations that make up the planned 3.6 km² 3-D deployment (Figure 3). Minor adjustments to spread and patch design will be necessary to optimize fold and azimuthal distribution for areas inaccessible or where landowner permission is not granted. Based on current reservoir simulations of the flood, the CO₂ front will form a 15-acre pie-shaped pattern with the three producing wells at the corners and the CO₂ injector well in the center. The current design provides uniform 20 to 24-fold coverage across an approximately 600 m x 450 m area centered on the flood pattern from start-up to breakthrough. Moving further away from the CO₂ injector, the two water injection wells planned for containment are all within the minimum 12-fold boundary. The 2-D, 2-C shear wave lines will intersect near the injection well and extend about 750 m away from the injector. Even if the flood strays significantly from the current expected sweep pattern this 3-D design will provide the necessary offsets, offset distribution, azimuthal control, and fold to monitor the CO₂ movement and eventual fate.

Design optimization incorporates conventional rules of thumb with high-resolution methodologies. Design simulations carefully consider key data requirements: bin size, X_{min}, X_{max}, fold, fold taper, migration aperture, squareness, azimuthal distribution, number of shot-points per kilometer, number of live receivers per kilometer, etc. Also considered: consistency in data characteristics throughout the seasonal changes, results of a walkaway test conducted during the summer of 2002 at the site, efficiency of acquisition and processing, uniform coverage and distributions based on target depth, resolution, and aerial coverage of flood at break through.
OMNI 3-D design software has been used to generate these preliminary designs and will be used to generate the most cost effective and signal-rich design possible for the actual site limitations.

Initial patch designs have limited bin size to a maximum 10 m x 10 m area while maintaining uniform fold (Figure 4), offset (Figure 5), and azimuthal distributions (Figure 6 and Table 1). Shot lines are perpendicular to receiver lines and staggered to form a modified brick pattern. This pattern makes access and movement along shot lines precarious in some areas. This style patch does complicate the acquisition (source and receiver deployments), but it provides the optimum traces and trace distribution for each bin.

A 240-channel Geometrics Strataview or 240-channel Geometrics Geode distributed system networked to a StrataVisor NZ acquisition controller will record the seismic data.

Figure 3. Orthophoto with preliminary 3-D survey design overlaying the wells involved with the CO₂ injection program. The flood extent at breakthrough (indicated by black crosshatching) is fully within the uniform 20 to 24-fold area of the survey. These 810 shot stations and 240 receiver stations will be occupied twelve times in 4 years before, during, and after flood activities.
Considering the offsets and power spectra of walkaway test data acquired in August 2002, a single IVI minivib with a one-of-a-kind prototype high-output Atlas rotary control valve sweeping 4 to 6 times at each source location should be optimal. Sweep frequencies for the P-wave survey will likely range from around 25 to 250 Hz with a 10 second duration. Receivers will be three digital grade 10 Hz Mark Products Ultra2w geophones wired in series with 14 cm oversized spikes. For each survey, geophones will be planted in a fresh spot but within a _ m of the station location as defined during the initial survey. The three-geophone spread will form a 1 m equilateral triangle.

Shear wave data will be acquired with the same source (re-configured) and seismograph but with 14 Hz horizontal geophones and a sweep frequency ranging from around 15 to 150 Hz. Both shear wave lines (Figure 3) will be live (recorded) for all shear wave sweeps. The resulting data could be processed as 2-D or 3-D. In-field data analysis and preliminary processing in the KGS mobile processing facility will insure the highest quality data and quickest 3-D processing later at the KGS.

Accurate station surveying is essential for any 3-D seismic reflection program and critical for 4-D surveys. Integral to 4-D surveying is the demand for the utmost in accuracy and therefore repeatability of station locations. The 3.6 km² survey grid proposed here will be located

Figure 4. Foldmap with shot and receiver stations in the background. Dark green and blue areas (10 fold and less) define the migration aperture.

Figure 5. Rose diagram showing the fold distribution with offset and orientation to the patch center.

Figure 6. Spider diagram showing the uniformity of azimuthal distribution with offset for each bin.
<table>
<thead>
<tr>
<th>Target depth</th>
<th>910 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-wave</td>
<td>S-wave</td>
</tr>
<tr>
<td>Bin width</td>
<td>10 m</td>
</tr>
<tr>
<td>Bin length</td>
<td>10 m</td>
</tr>
<tr>
<td>X_{min}</td>
<td>694.3 m</td>
</tr>
<tr>
<td>X_{max}</td>
<td>1705.7 m</td>
</tr>
<tr>
<td>Receiver area</td>
<td>1.0 km2</td>
</tr>
<tr>
<td>Shot area</td>
<td>3.6 km2</td>
</tr>
<tr>
<td>Bin area</td>
<td>2.0 km2</td>
</tr>
<tr>
<td>Number of receivers</td>
<td>240</td>
</tr>
<tr>
<td>Number of live receivers</td>
<td>240</td>
</tr>
<tr>
<td>Number of shot stations</td>
<td>810</td>
</tr>
<tr>
<td>Receiver station interval</td>
<td>20 m</td>
</tr>
<tr>
<td>Shot point interval</td>
<td>20 m</td>
</tr>
<tr>
<td>Receiver line interval</td>
<td>200 m</td>
</tr>
<tr>
<td>Shot line interval</td>
<td>100 m</td>
</tr>
<tr>
<td>Number of receiver lines</td>
<td>5</td>
</tr>
<tr>
<td>Number of shot lines</td>
<td>19</td>
</tr>
<tr>
<td>Number of receiver stations/line</td>
<td>48</td>
</tr>
<tr>
<td>Number of shot stations/line</td>
<td>42.63</td>
</tr>
<tr>
<td>Total length of receiver lines</td>
<td>4.3 km</td>
</tr>
<tr>
<td>Total length of shot lines</td>
<td>27.6 km</td>
</tr>
</tbody>
</table>

absolutely using a Trimble survey-grade DGPS system. The same digital map will be used to exactly relocate each station for each of the repeat 3-D surveys. Data for each survey will be acquired uninterrupted during 48 hours of continuous operation. If production activity permits, the pump wells will be shut down during shooting of the seismic data to improve signal-to-noise (S/N) ratio.

Generation of a 3-D stacked cube ready for interpreting a month or so after collection will require a high-throughput commercial processing package such as the 2-D/3-D ProMax (a product of Landmark) processing package currently running at the KGS on a dual processor SGI Octane workstation. High-resolution (very short wavelengths) 3-D data will be necessary to have any chance of detecting the different layers within the pay zone at around 900 m. Optimally processing these 3-D data will involve techniques and algorithms developed for petroleum applications but carefully analyzed and applied in a fashion consistent with the needs of shorter wavelength and lower signal-to-noise ratio high-resolution data. Cross-equalization techniques will be evaluated and tailored to minimize or eliminate likely changes in wavelet characteristics, velocity, or statics from survey to survey associated with seasonal changes in near-surface conditions. Conventional seismic reflection technology (2-D and 3-D) is generally considered to be in the mature stages of its development, whereas high-resolution applications, especially in the area of 3-D acquisition and processing, are still in their infancy.
Interpretation of these seismic data will primarily involve difference analysis. Volumes including instantaneous frequency, amplitude, and phase along with impedance and coherency will be generated, compared, and differenced in search of the seismic attribute or attributes most sensitive to CO_2 (fluid) movement in the reservoir. Industry experience confirms that empirical seismic attributes can be correlated with subsurface properties, and that attributes can be estimated using multivariate statistical procedures such as canonical correlation. Calculation of standard attributes and associated interpretations will be done using Kingdom Suites software. Time-to-depth conversions will be based on NMO velocity calculations and borehole sonic data. Animation of flood movement using attribute, synthetic, wiggle trace, and difference cubes will be developed and analyzed with the production of each seismic volume.

Enhancement of reservoir simulation performance will require development of 3-D volumes of geophysical properties for each cell. The first step in creating a model of the reservoir is to determine the multivariate three-dimensional semivariance, which expresses the rate-of-change with distance within the geophysical field. This is done by calculating experimental semivariograms independently for each geophysical property (e.g., impedance and amplitude) that will be mapped. From these semivariograms each cell as defined by the simulator model will be populated with the seismic properties and standard error.

The model is expanded by the introduction of time as an axis in 4-dimensional space-time with a series of cells having uniform temporal spacing. The most appropriate procedure for rescaling (or change of support, as the process is known in the geostatistical literature) involves geostatistical estimation and stochastic simulation (Christakos, 1992; Jeulin, 1994; Olea, 1999). These procedures have been applied mostly in either the time or the space dimension but can be extended to simultaneously include both time and space. The initial set of cells contain only naïve estimates because the data have only two temporal coordinates, but with the acquisition of a third and successive survey, rates-of-change with time can be estimated and used to refine the initial estimates.

Multiple qualitative and quantitative 3D models will be constructed to represent all reservoir characterization data at an appropriate range of realizations. These will both mirror and supplement the reservoir models developed as part of the demonstration project. Elements of the qualitative models will include nature of reservoir rocks, variability in reservoir quality, types, scales, and heterogeneity, reservoir architecture, definition and distribution of flow units, and nature of bedding and flow barriers. Elements of the 3D quantitative model will include grid block dimensions, porosity, effective permeabilities, compressibility, capillary pressure, and fluid properties. All data and models will be compiled in a database and visualized in 3D using one or more modeling software packages.

Reservoir simulation study at well and field levels will be carried out on the reservoir geomodels using PC-based reservoir simulator IMEX and using the compositional simulation module GEM (Computer Modeling Group Ltd., Calgary, Canada). A numerical approach that will be attempted will require correlation of seismic observations with synthetic seismograms produced from numerical reservoir simulator output, Gassmann’s equations, and simple convolution (Huang et al., 1998). Discrepancies between the simulation output and data from each new 3-D seismic image of the flood will be addressed by refining the reservoir geomodels. Each refinement of the geomodel will be tested against the existing pressure and production
Refinement of both the reservoir simulation model and the seismic interpretation will be interactive. Refinement of the reservoir simulation model will provide new distributions of properties. These in turn will be used to evaluate the seismic results and modify analysis procedures. Feedback will occur throughout the project. In addition, both the seismic and reservoir simulation predictions of saturation changes will be correlated with reported injected and produced fluid volumes to assess the error in material balance between the methods.

Evaluation of the optimum methodology and procedures for monitoring movement and eventual fate of CO$_2$ injected into this carbonate reservoir will be a major product.

At the conclusion of each phase a milestone is reached that represents a decision point for continuation of the project. Positive, successful findings and confidence in effectiveness of technologies will be necessary to move to the next phase. Detailed discussions and briefings with DOE representatives will represent the forum for making the decision to continue or abort the project.

Phase-by-Phase Tasks to Be Performed

PHASE ONE

Task 1—Finalize design survey
- Subtask 1.1 permits and access
- Subtask 1.2 modify shot and receiver locations based on access
- Subtask 1.3 coordinate with production schemes to minimize noise

Task 2—Acquire/process baseline 3-D P-wave & 2-D S-wave after pressuring reservoir
- Subtask 2.1 GPS survey stations,
- Subtask 2.2 standardize procedure for acquisition of 3-D volumes,
- Subtask 2.3 acquire 3-D compressional wave baseline survey
- Subtask 2.4 acquire 2-D, 2-C shear wave baseline survey
- Subtask 2.5 generate standard, high resolution 3-D volume
- Subtask 2.6 generate standard, 2-D shear cross-sections (SH & SV)
- Subtask 2.7 preliminary attribute analyses
- Subtask 2.8 compare and contrast with all geologic and reservoir information
- Subtask 2.9 evaluate data quality and potential to achieve goals and objectives

Task 3—Develop synthetic from reservoir simulations
- Subtask 3.1 run reservoir model forward in time capturing specific snap-shots
- Subtask 3.2 convert simulation output to synthetic using Gassmann’s equations
- Subtask 3.3 compare and contrast baseline synthetic with real seismic volume
- Subtask 3.4 develop optimization scheme to match synthetic and real

PHASE TWO

Task 4—First time-lapse 3-D compressional survey and correlation to predicted
- Subtask 4.1 3-D P-wave survey
- Subtask 4.1.1 GPS survey stations
Subtask 4.1.2 acquire 1st 3-D P-wave survey (fixed procedure)
Subtask 4.1.3 process 1st 3-D P-wave survey
Subtask 4.1.4 refine/optimize processing flows, evaluate cross-equalization techniques
Subtask 4.1.5 reprocess both baseline and 1st time lapse using optimized flow
Subtask 4.1.6 attribute analyses
Subtask 4.1.7 evaluate data & likelihood of satisfactorily achieving goals/objectives
Subtask 4.2 Evaluate flood scheme
Subtask 4.2.1 compare differences between synthetic from simulations & real data
Subtask 4.2.2 iteratively revise flood scheme in simulations
Subtask 4.2.3 develop revised flood scheme to min. or eliminate non-linearities

PHASE THREE
Task 5—Second time-lapse 3-D compressional survey & Evaluate flood scheme
 Subtask 5.1 3-D P-wave survey
 Subtask 5.1.1 GPS survey stations
 Subtask 5.1.2 acquire 2nd 3-D P-wave survey (fixed procedure)
 Subtask 5.1.3 process 2nd 3-D P-wave survey (fixed flow based on subtask 4.1.4)
 Subtask 5.1.4 attribute analysis and interpretation
 Subtask 5.2 evaluate flood scheme
 Subtask 5.2.1 compare differences between synthetic from simulations & real data
 Subtask 5.2.2 iteratively revise flood scheme in simulations
 Subtask 5.2.3 develop revised flood scheme to minimize/eliminate non-linearities

Tasks 6 & 7—repetitive cycle consistent with Tasks 4 and 5
Task 8—Fifth time lapse 3-D P-wave & evaluation of flood scheme & second 2-D, 2-C S-wave
 Subtask 8.1 3-D P-wave survey
 Subtask 8.1.1 GPS survey stations
 Subtask 8.1.2 acquire 5th 3-D P-wave survey (fixed procedure)
 Subtask 8.1.3 acquire 1st 2-D 2-C S-wave survey (fixed procedure)
 Subtask 8.1.4 process 5th 3-D P-wave survey (fixed flow based on subtask 4.1.4)
 Subtask 8.1.5 process 1st 2-D 2-C S-wave survey
 Subtask 8.1.6 refine/optimize processing for S-wave, evaluated cross-equalization
 Subtask 8.1.7 attribute analysis and interpretation
 Subtask 8.1.8 evaluate data & likelihood to satisfactorily achieve goals/objectives
 Subtask 8.2 Evaluate flood scheme
 Subtask 8.2.1 compare differences between synthetic from simulations & real data
 Subtask 8.2.2 iteratively revise flood scheme in simulations
 Subtask 8.2.3 develop revised flood scheme to minimize/eliminate non-linearities

Task 9—Sixth time-lapse 3-D compressional survey & flood evaluation
 Subtask 9.1.1 GPS survey stations
 Subtask 9.1.2 acquire 6th 3-D P-wave survey (fixed procedure)
 Subtask 9.1.3 process 6th 3-D P-wave survey (fixed flow based on subtask 4.1.4)
 Subtask 9.1.4 attribute analysis and interpretation
 Subtask 9.2 evaluate flood scheme
 Subtask 9.2.1 compare differences between synthetic from simulations & real data
 Subtask 9.2.2 iteratively revise flood scheme in simulations
 Subtask 9.2.3 develop revised flood scheme to minimize/eliminate non-linearities
Tasks 10 & 11—repetitive cycle consistent with Task 9
Task 12—Evaluation of flood efficiency and detailed tracking of flood movement
 Subtask 12.1 baseline & all time-lapse seismic volumes animated
 Subtask 12.2 compare/contrast animation of simulations and seismic
 Subtask 12.3 evaluate how well seismic/simulations predict breakthrough
 Subtask 12.4 decimate seismic data to establish min. effort to monitor accurately
 Subtask 12.5 appraise cost effectiveness of 4-D seismic, oil$ > seismic$?
 Subtask 12.6 evaluate how well goals/objectives were achieved
Task 13—Ninth time-lapse 3-D compressional survey & flood evaluation
 Subtask 13.1.1 GPS survey stations
 Subtask 13.1.2 acquire 7th 3-D P-wave survey (fixed procedure)
 Subtask 13.1.3 process 7th 3-D P-wave survey (fixed flow based on subtask 4.1.4)
 Subtask 13.1.4 attribute analysis and interpretation
 Subtask 13.2 evaluate flood scheme
 Subtask 13.2.1 compare differences between synthetic from simulations & real data
 Subtask 13.2.2 iteratively revise flood scheme in simulations
 Subtask 13.2.3 develop revised flood scheme to minimize/eliminate non-linearities
Task 14—Tenth time-lapse 3-D compressional survey & flood evaluation
 Subtask 14.1.1 GPS survey stations
 Subtask 14.1.2 acquire 8th 3-D P-wave survey (fixed procedure)
 Subtask 14.1.3 process 8th 3-D P-wave survey (fixed flow based on subtask 4.1.4)
 Subtask 14.1.4 attribute analysis and interpretation
 Subtask 14.2 evaluate flood scheme
 Subtask 14.2.1 compare differences between synthetic from simulations & real data
 Subtask 14.2.2 iteratively revise flood scheme in simulations
 Subtask 14.2.3 develop revised flood scheme to minimize/eliminate non-linearities
Task 15—Eleventh time-lapse 3-D compressional survey & flood evaluation
 Subtask 15.1.1 GPS survey stations
 Subtask 15.1.2 acquire 9th 3-D P-wave survey (fixed procedure)
 Subtask 15.1.3 process 9th 3-D P-wave survey (fixed flow based on subtask 4.1.4)
 Subtask 15.1.4 attribute analysis and interpretation
 Subtask 15.2 evaluate flood scheme
 Subtask 15.2.1 compare differences between synthetic from simulations & real data
 Subtask 15.2.2 iteratively revise flood scheme in simulations
 Subtask 15.2.3 develop revised flood scheme to minimize/eliminate non-linearities
Task 16—Evaluate sequestration component
 Subtask 16.1 Analyze seismic volumes for evidence of containment breach and movement
 Subtask 16.2 Develop methods and define seismic characteristics that might flag changes in CO₂ stability within reservoir
 Subtask 16.3 Map areas that might have CO₂ outside containment area—possible drill targets
 Subtask 16.4 Evaluate the effectiveness of 4-D seismic as a monitoring tool for both the injection and assurance requirements of CO₂ sequestration
TIMELINE SUMMARY

<table>
<thead>
<tr>
<th>TASK</th>
<th>Budget Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE ONE—Pre-Injection</td>
<td></td>
</tr>
<tr>
<td>Task 1—Design</td>
<td></td>
</tr>
<tr>
<td>Task 2—Baseline 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>Task 3—Synthetic</td>
<td></td>
</tr>
<tr>
<td>PHASE TWO—Injection</td>
<td></td>
</tr>
<tr>
<td>Task 4—First 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>PHASE THREE</td>
<td></td>
</tr>
<tr>
<td>Task 5—Second 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>Task 6—Third 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>Task 7—Fourth 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>Task 8—Fifth 3-D & Second 2-C Survey</td>
<td></td>
</tr>
<tr>
<td>Task 9—Sixth 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>Task 10—Seventh 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>Task 11—Eighth 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>Task 12—Evaluation</td>
<td></td>
</tr>
<tr>
<td>Task 13—Ninth 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>Task 14—Tenth 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>Task 15—Eleventh 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>Task 16—Sequestration Eval.</td>
<td></td>
</tr>
</tbody>
</table>

Deliverables

Throughout the project papers describing significant findings will be produced for presentation and publication at a rate of 2 to 4 per year. It is anticipated that abstracts (AAPG, GSA, AGU, etc.) and expanded abstracts (SEG & EEGS) will be prepared for presentation at national meetings with full journal articles submitted for peer review and publication. Associated with these presentations and peer reviewed journal publications will be reports and results posted on a dedicated web page. Utilizing the web as an interim reporting media has been an effective tool used by this research team to communicate results with the U.S. Army and others on previous research projects. With twelve unique data acquisition campaigns carried out on a non-uniform schedule, dynamic reporting will be done both in the field through wireless connections to the web page and at various milestones throughout the project. All reservoir simulation model refinements will be documented to provide a “history” of the changes in the model, a result of information obtained from each survey. Input files and modeling results will be available on the web. Web reporting pages will have both public and password-protected parts. Each task will have a report or segment dedicated to the associated activities. At any time there may be as many as 5 to 6 tasks with information being brought on-line simultaneously.
Approaches, techniques, or methodologies developed in association with this study will be transferred to the industry through demonstrations, publications, and seminars. The web will serve not only as the interim reporting needs, but it will also act as a data and information resource for industry. Graphics with discussion of data examples at various stages of the acquisition and processing will be available as well as any code developed for unique problems or interpretations. Availability to cooperate on field demonstrations and assist with the design of optimum surveys for similar commercial applications will be an on-going activity. All data will be made available to any industry, government, academic, and research groups requesting it.

Potential Obstacles and Mitigation Strategies

All seismic surveys have problems and setbacks. Over two decades of experience with high-resolution seismic reflection surveying provides an outstanding footing to both recognize and address obstacles that can negatively impact the usefulness of a seismic survey. Listed below are the most likely problems and tentative solutions:

access limitations—redesign 3-D survey to compensate as best possible. The only question presently relates to surface access on the southeast, other surface ownership positions have been investigated and are favorable.

acquisition equipment malfunctions—equipment is in excellent shape, the minivib manufacturer is only 2 hours away, and spare seismographs will be on-site. Redundancy exists in all hardware two or three fold (rental vib ready to be on-site within hours, only SGI workstation without a redundant system, but contract service and repair local).

weather problems—weather delays are possible, shooting will only be in best conditions for the scheduled time of year and site access issues. All-weather equipment will be used.

processing difficulties—variability between processed sections not related to CO$_2$ injection and cannot be compensated for using standard high-resolution processing flows. Post-stack cross-equalization and a variety of surface-consistent cross-equalization techniques will be used. At worst a delay in posting the findings will result.

hardware failures—redundant systems will be on-site for all hardware. Data will be stored on two different media and in two different places within hours of creation.

CO$_2$ seismically undetectable—focus will shift to secondary goals such as optimization techniques for high-resolution imaging shallow reservoirs with very small profit margins.

data resolution or signal-to-noise limitations—focus on tracking CO$_2$ through the entire 4 m pay zone as a single interval and look at indirect detection of the fluid changes.

non-unique reservoir simulation methods—reservoir simulations do not represent unique solutions modeling. The model(s) developed will honor all available data and variations in uncertainty.
Quality and Suitability of Facilities, Equipment, and Materials

All seismic equipment is state-of-the-art, most customized for high-resolution applications. This program boasts ownership of the most extensive, best maintained, and optimally specialized high-resolution seismic equipment in the world with expert operators possessing a wide range of field experience.

Seismic system—Geometrics 240-channel R60 StrataView w/StrataVisor NZC for 240-channel Geode

Source—IVI Buggy minivib vibrator w/3.5 psi ground pressure (15-500 Hz, 10,000 lb peak force) with Atlas high-output rotational valve (prototype)

Geophones—Triple 10 Hz U2w & Double 40 Hz L28E both by Mark Products; GS-11D, 14 Hz horizontal, Geospace

Cables—Over 300 takeouts of seismic cable purchased within the last two years with over 2 km of pass cable

Field Processing Center—Semi truck with climate controlled processing center: Thermal printer, color plotter, three P4-class PCs, workstations for three staff, network to seismograph.

Other Supporting Software and Equipment
2-D/3-D ProMax, WinSeis 2, SIS Kingdom Suites Interpretation Package
IMEX PC Reservoir Simulator, GEM module from Computer Modeling Group Ltd.
SGI, Octane-w/dual 400 MHz processors, 40GB HD, 256 MB RAM, CD-ROM, 8mm Exabyte
25 Pentium-class PCs (over half greater than 1 Ghz)
Over 2 Terabyte portable HD space available in mobile processing center
4mm DAT, 8mm Exabyte, 9-track tape drives, CDR
36-inch high resolution color plotter

Field Support equipment—VHF radios (over a dozen handheld and vehicle mounts), Auto-line checker, Cable and geophone testing equipment, Complete set of spare parts for minivib, Generators, Surveying equipment (Trimble 4800 and 4700 differential GPS real-time sub 10 cm x,y,z), Cable adapters and jumpers, Bench grade seismograph analyzer, Tracked ATV’s, three 6-wheel ATV’s, portable shop with repair and maintenance capabilities, etc.

All equipment is transported to the site by KGS vehicles
1997 Freightliner with utility box and 35 ft flatbed vibrator transport trailer
2001 International with data processing center facility pulling 36 ft covered trailer
Qualification of Organization and Previous Experience

The Kansas Geological Survey is a research division of the University of Kansas and a recognized expert in high-resolution seismic reflection with demonstrated expertise in petroleum geology. Previous experience in the field includes applied research in 2-D and 3-D high-resolution imaging from the Arctic to South Texas. The objectives have been delineating subtle or small-scale geologic features at depths ranging from 2 m to 1.5 km. With applied research projects in over 30 states and 5 foreign countries focusing on difficult targets, the KGS brings an experienced high-resolution seismic imaging and reservoir geology team together capable of developing innovative techniques and formulating novel concepts. This group, as a whole, possesses decades of experience in midcontinent petroleum reservoir research.

References

Benson, S., 2001, Effects of reservoir heterogeneity on pressure build-up and fall-off at CO₂ injection wells [Abs.]: Proceedings of the AAPG annual meeting, Denver, Colorado.
Byrnes, A., 2000, Field demonstration of carbon dioxide miscible flooding in the Lansing-Kansas City formation, Central Kansas: ERC Update, August, p. 3.

Jeulin, D., 1994, Change in scale in random media, in Dimitrakopoulos, R., ed.: Geostatistics for the Next Century, p. 235-244.

Pedersen, P.K., S. Whittaker, J.E. Christopher, and M. Yurkowski, 2003, Characterizing secondary seals for geologic storage of CO₂ in the Weyburn Field of the Williston Basin, Saskatchewan, Canada [Abs.]: Proceedings of the AAPG annual meeting, Salt Lake City, Utah.
ATTACHMENT A

Project Timeline and Milestones

<table>
<thead>
<tr>
<th>MILESTONES</th>
<th>TASK</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUDGET YEAR</td>
<td>0</td>
</tr>
<tr>
<td>PHASE ONE–Pre-Injection</td>
<td></td>
</tr>
<tr>
<td>Task 1–Design</td>
<td></td>
</tr>
<tr>
<td>1.1 Permits</td>
<td></td>
</tr>
<tr>
<td>1.2 Modify pattern</td>
<td></td>
</tr>
<tr>
<td>1.3 Coord. Production scheme</td>
<td></td>
</tr>
<tr>
<td>Task 2–Baseline 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>2.1 GPS</td>
<td></td>
</tr>
<tr>
<td>2.2 Standardize procedure</td>
<td></td>
</tr>
<tr>
<td>2.3 Acquire 3-D P-wave</td>
<td></td>
</tr>
<tr>
<td>2.4 Acquire 2-D, 2-C S-wave</td>
<td></td>
</tr>
<tr>
<td>2.5 Process 3-D P-wave</td>
<td></td>
</tr>
<tr>
<td>2.6 Process 2-D, 2-C S-wave</td>
<td></td>
</tr>
<tr>
<td>2.7 Attribute analysis</td>
<td></td>
</tr>
<tr>
<td>2.8 Compare/contrast w/geology</td>
<td></td>
</tr>
<tr>
<td>2.9 Evaluate potential</td>
<td></td>
</tr>
<tr>
<td>Task 3–Synthetic</td>
<td>*</td>
</tr>
<tr>
<td>3.1 Reservoir model run</td>
<td></td>
</tr>
<tr>
<td>3.2 Convert to seismic synthetic</td>
<td></td>
</tr>
<tr>
<td>3.3 Compare/contrast</td>
<td></td>
</tr>
<tr>
<td>3.4 Optimize procedure</td>
<td></td>
</tr>
<tr>
<td>PHASE TWO–Injection</td>
<td></td>
</tr>
<tr>
<td>Task 4–First 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>4.1 3-D P-wave survey</td>
<td></td>
</tr>
<tr>
<td>4.1.1 GPS</td>
<td></td>
</tr>
<tr>
<td>4.1.2 Acquire 3-D P-wave</td>
<td></td>
</tr>
<tr>
<td>4.1.3 Process 3-D P-wave</td>
<td></td>
</tr>
<tr>
<td>4.1.4 Refine/optimize processing</td>
<td></td>
</tr>
<tr>
<td>4.1.5 Reproc. baseline & 1st 3-D</td>
<td></td>
</tr>
<tr>
<td>4.1.6 Attribute analysis</td>
<td></td>
</tr>
<tr>
<td>4.1.7 Evaluate potential</td>
<td></td>
</tr>
<tr>
<td>4.2 Evaluation flood</td>
<td></td>
</tr>
<tr>
<td>4.2.1 Compare synthetic to real</td>
<td></td>
</tr>
<tr>
<td>4.2.2 Iteratively revise flood</td>
<td></td>
</tr>
<tr>
<td>4.2.3 Devise new flood scheme</td>
<td></td>
</tr>
<tr>
<td>PHASE THREE</td>
<td></td>
</tr>
<tr>
<td>Task 5–Second 3-D Survey</td>
<td></td>
</tr>
<tr>
<td>5.1 3-D P-wave survey</td>
<td></td>
</tr>
<tr>
<td>5.1.1 GPS</td>
<td></td>
</tr>
<tr>
<td>5.1.2 Acquire 3-D P-wave</td>
<td></td>
</tr>
<tr>
<td>5.1.3 Process 3-D P-wave</td>
<td></td>
</tr>
<tr>
<td>5.1.4 Attributes/interpretation</td>
<td></td>
</tr>
<tr>
<td>5.2 Evaluation flood</td>
<td></td>
</tr>
<tr>
<td>5.2.1 Compare</td>
<td></td>
</tr>
<tr>
<td>5.2.2 Iteratively revise flood</td>
<td></td>
</tr>
<tr>
<td>5.2.3 Devise new flood scheme</td>
<td></td>
</tr>
</tbody>
</table>

1 month after

3 months after
<table>
<thead>
<tr>
<th>TASK 6–Third 3-D Survey</th>
<th>BUDGET YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 3-D P-wave survey</td>
<td>0</td>
</tr>
<tr>
<td>6.1.1 GPS</td>
<td>0.5</td>
</tr>
<tr>
<td>6.1.2 Acquire 3-D P-wave</td>
<td>1.0</td>
</tr>
<tr>
<td>6.1.3 Process 3-D P-wave</td>
<td>1.5</td>
</tr>
<tr>
<td>6.1.4 Attributes/interpretation</td>
<td>2.0</td>
</tr>
<tr>
<td>6.2 Evaluation flood</td>
<td>2.5</td>
</tr>
<tr>
<td>6.2.1 Attributes/interpretation</td>
<td>3.0</td>
</tr>
<tr>
<td>6.2.2 Iteratively revise flood</td>
<td>3.25</td>
</tr>
<tr>
<td>6.2.3 Devise new flood scheme</td>
<td>3.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TASK 7–Fourth 3-D Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 3-D P-wave survey</td>
</tr>
<tr>
<td>7.1.1 GPS</td>
</tr>
<tr>
<td>7.1.2 Acquire 3-D P-wave</td>
</tr>
<tr>
<td>7.1.3 Process 3-D P-wave</td>
</tr>
<tr>
<td>7.1.4 Attributes/interpretation</td>
</tr>
<tr>
<td>7.2 Evaluation flood</td>
</tr>
<tr>
<td>7.2.1 Attributes/interpretation</td>
</tr>
<tr>
<td>7.2.2 Iteratively revise flood</td>
</tr>
<tr>
<td>7.2.3 Devise new flood scheme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TASK 8–Fifth 3-D & Second 2-C Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Surveys</td>
</tr>
<tr>
<td>8.1.1 GPS</td>
</tr>
<tr>
<td>8.1.2 Acquire 3-D P-wave</td>
</tr>
<tr>
<td>8.1.3 Acquire 2-D, 2-C S-wave</td>
</tr>
<tr>
<td>8.1.4 Process 3-D P-wave</td>
</tr>
<tr>
<td>8.1.5 Process 2-D, 2-C S-wave</td>
</tr>
<tr>
<td>8.1.6 Refine/opt. S-wave process</td>
</tr>
<tr>
<td>8.1.7 Attributes/interpretation</td>
</tr>
<tr>
<td>8.1.8 Evaluate data & goals</td>
</tr>
<tr>
<td>8.2 Evaluation flood</td>
</tr>
<tr>
<td>8.2.1 Compare synthetic to real</td>
</tr>
<tr>
<td>8.2.2 Iteratively revise flood</td>
</tr>
<tr>
<td>8.2.3 Devise new flood scheme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TASK 9–Sixth 3-D Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Survey</td>
</tr>
<tr>
<td>9.1.1 GPS</td>
</tr>
<tr>
<td>9.1.2 Acquire 3-D P-wave</td>
</tr>
<tr>
<td>9.1.3 Process 3-D P-wave</td>
</tr>
<tr>
<td>9.1.4 Attributes/interpretation</td>
</tr>
<tr>
<td>9.2 Evaluation flood</td>
</tr>
<tr>
<td>9.2.1 Compare synthetic to real</td>
</tr>
<tr>
<td>9.2.2 Iteratively revise flood</td>
</tr>
<tr>
<td>9.2.3 Devise new flood scheme</td>
</tr>
</tbody>
</table>

MILESTONES

<table>
<thead>
<tr>
<th>Start CO₂ injection</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 months after

6 months after

9 months after

12 months after

18 months after
MILESTONES

<table>
<thead>
<tr>
<th>TASK</th>
<th>BUDGET YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

Task 10—Seventh 3-D Survey
- 10.1 Survey
- 10.1.1 GPS
- 10.1.2 Acquire 3-D P-wave
- 10.1.3 Process 3-D P-wave
- 10.1.4 Attributes/interpretation
- 10.2 Evaluation flood
- 10.2.1 Compare synthetic to real
- 10.2.2 Iteratively revise flood
- 10.2.3 Devise new flood scheme

Task 11—Eighth 3-D Survey
- 11.1 Survey
- 11.1.1 GPS
- 11.1.2 Acquire 3-D P-wave
- 11.1.3 Process 3-D P-wave
- 11.1.4 Attributes/interpretation
- 11.2 Evaluation flood
- 11.2.1 Compare synthetic to real
- 11.2.2 Iteratively revise flood
- 11.2.3 Devise new flood scheme

Task 12—Evaluation
- 12.1 Baseline & all time lapse
- 12.2 Comp./contrast animation
- 12.3 Evaluate prediction
- 12.4 Decimate, min. effort
- 12.5 Appraise cost
- 12.6 Evaluate goals/objectives

Task 13—Ninth 3-D Survey
- 13.1 Survey
- 13.1.1 GPS
- 13.1.2 Acquire 3-D P-wave
- 13.1.3 Process 3-D P-wave
- 13.1.4 Attributes/interpretation
- 13.2 Evaluation flood
- 13.2.1 Compare synthetic to real
- 13.2.2 Iteratively revise flood
- 13.2.3 Devise new flood scheme

Task 14—Tenth 3-D Survey
- 14.1 Survey
- 14.1.1 GPS
- 14.1.2 Acquire 3-D P-wave
- 14.1.3 Process 3-D P-wave
- 14.1.4 Attributes/interpretation
- 14.2 Evaluation flood
- 14.2.1 Compare synthetic to real
- 14.2.2 Iteratively revise flood
- 14.2.3 Devise new flood scheme

24 months after
30 months after
24 months after
36 months after
48 months after
* New flood scheme after CO₂ injection has ceased involves production and water injection to guide remaining reserves to production wells. Simulations will not be run once the formation is shut in and no injection activities are planned.
ATTACHMENT C

Vitae of Team Members
RICHARD D. MILLER

Education

B.A., Physics (Minor, Chemistry), Benedictine College, 1980.
M.S., Physics, Emphasis Geophysics, University of Kansas, 1983.

Professional Experience

Associate Scientist, Kansas Geological Survey, University of Kansas, 1996-present.
Courtesy Associate Professor of Geology, Department of Geology, University of Kansas, 1997-present.
Chief, Exploration Services Section, Kansas Geological Survey, University of Kansas, 1987-present.
Seismic Application Research experience in thirty-three states and six foreign countries.

Pertinent Publications

ALAN P. BYRNES

PRESENT POSITION:
Research Geologist
Kansas Geological Survey
University of Kansas
Lawrence, Kansas 66047

EDUCATION:
M.S. University of Chicago, Geophysical Sciences, 1977
B.S. University of Illinois at Chicago, Geological Sciences (honors & distinction), 1975

PERTINENT EXPERIENCE:
1997-Present Research Geologist, Kansas Geological Survey, University of Kansas, Lawrence, KS
1983-1995 Owner/Manager, GeoCore (Special core analysis laboratory), Boulder, CO
1982-1983 Geotechnical Engineer, Xytel Corporation, Mt. Prospect, IL
1980-1982 Associate Geologist, Marathon Oil Company, Denver Research Center, Littleton, CO
1977-1980 Earth Scientist, Institute of Gas Technology, Chicago, IL
1975-1978 Research Assistant, University of Chicago, Chicago, IL

HONORS:
AAPG Roger N. Planalp Award
AAPG Jules Braunstein Award

MEMBERSHIP IN PROFESSIONAL ORGANIZATIONS:
American Association of Petroleum Geologists
Society of Petroleum Engineers
Society of Core Analysts
Society of Professional Well Log Analysts

PERTINENT PUBLICATIONS:

Byrnes, A P., and M.D. Wilson. 1995. Influence of dolomite cement on the permeability and capillary pressure properties of quartzose sands, Proceedings AAPG Annual Convention, March 5-8 Houston, TX, p. 14A.

SAIBAL BHATTACHARYA

PRESENT POSITION:
Petroleum/Reservoir Engineer
Kansas Geological Survey

EDUCATION:
M.S. 1995 University of Kansas, Lawrence, Ks., Petroleum Engineering
M.S. 1996 University of Kansas, Lawrence, Ks., Environmental Engineering
B.Tech. 1987 Indian School of Mines, Dhanbad, India, Petroleum Engineering

PERITNT EXPERIENCE:
January, 1995-Present Kansas Geological Survey, Petroleum Engineer
August, 1994-May, 1995 University of Kansas, Graduate Teaching Assistant in Environmental Engineering
July, 1992-July, 1994 University of Kansas, Research Assistant for the Tertiary Oil Recovery Project
1987-January, 1992 National Oil Company of India (ONGC), Reservoir Engineer

HONORS:
Recipient of the Norman Plummer Award from the Kansas Geological Survey in 1996 for outstanding engineering work.
Awarded "Certificate of Merit" by the National Oil Company of India (ONGC) for services rendered as a Reservoir Engineer in 1990.

MEMBERSHIP IN PROFESSIONAL ORGANIZATIONS:
Tau Beta Pi (engineering honor society)
Society of Petroleum Engineers
American Association of Petroleum Geologists

PERITNT PUBLICATIONS:

Bhattacharya, S., 1995, Experimental studies on injectivity and fluid-rock interaction of KUSP1 in porous media; MS thesis, Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence.

RELATED PRESENTATIONS:

Gerlach, P.M., Bhattacharya, S., Byrnes, A., and Carr, T., 2001, Demonstration of cost-effective tools for integrated reservoir characterization and simulation to predict performance of horizontal infill well, Ness City North field, Ness County, Kansas, AAPG Annual Convention, June 3-6, Denver, Colorado, p. A70

Guy, W.J., Carr, T.R., Franseen, E.K., Bhattacharya, S., and Beaty, S., 1997, Combination of magnetic resonance and classic petrophysical techniques to determine pore geometry and characterization of a complex heterogeneous carbonate reservoir; AAPG Annual Convention, April 6-9, Dallas, Texas, p. A45

MARTIN K. DUBOIS

CURRENT POSITION:
Research Geologist
Kansas Geological Survey, University of Kansas
1930 Constant Avenue
Lawrence, Kansas 66047

FORMAL EDUCATION:

B.S. Geophysics (*cum laude*), Kansas State University, 1974
M.S. Geology (*honors*), University of Kansas, 1980

PROFESSIONAL EXPERIENCE:

1999-Present Research Geologist, Petroleum Research Section, Kansas Geological Survey,
 University of Kansas, Lawrence, Kansas
1977-1979 Graduate teaching assistant, University of Kansas, Lawrence, Kansas
1975-1977 Exploration Geologist, Cities Service Oil Company, Tulsa and Oklahoma
 City, Oklahoma

SELECTED HONORS:

H.A. Ireland Honor Award, graduate student award, University of Kansas, 1978.
Jules Braunstein Memorial Award for best poster at AAPG annual meeting in Denver, Colorado,
Division of Environmental Geosciences award for best poster presentation for the Division of
Environmental Geosciences, AAPG annual meeting, Houston, 2002.
President’s Certificate for Excellence in Presentation (Poster), Energy Minerals Division, AAPG
annual meeting, Houston, 2002.

PROFESSIONAL:

American Association of Petroleum Geologists
Kansas Geological Society
Rocky Mountain Association of Geologists
AAPG Certified Petroleum Geologist #3622
Kansas Geologist License #408

ABSTRACTS AND PUBLICATIONS:

Dubois, M.K., 1980, Paleotopography’s influence on porosity distribution in the Lansing-Kansas
City “E” zone, Hitchcock County, Nebraska (abs.), American Association of Petroleum
Geologists Bulletin, V. 64, p. 701.
Dubois, M.K., 1983, Application of cores in development of an exploration strategy for the Lansing-Kansas City “E” zone, Hitchcock County, Nebraska, Kansas Core Workshop Notes, Mid-Continent AAPG Sectional Meeting, Wichita, Kansas, pp. 147-167.

W. LYNN WATNEY

PRESENT POSITION:

Executive Director, The University of Kansas Energy Research Center, 1991-present.
Courtesy Professor of Geology, University of Kansas and Kansas State University, 1988-present.
Senior Scientist, Kansas Geological Survey

EDUCATION:

A.A. 1968 North Iowa Area Community College, Mason City, Iowa
B.S. 1970 "With Distinction," Iowa State University, Ames, Iowa; (Major: Geology; Minors: Chemistry, Mathematics)
M.S. 1972 Iowa State University, Ames, Iowa, Geology
Ph.D. 1985 University of Kansas, Geology

PERTINENT EXPERIENCE:

1990-1991 Special Assistant for Energy Research, Kansas Geological Survey
1987-1990 Chief, Petroleum Research Section, Kansas Geological Survey, The University of Kansas, Lawrence, Kansas
1983-1987 Chief, Geologic Investigations Section, Kansas Geological Survey, The University of Kansas, Lawrence, Kansas
1981-1983 Chief, Subsurface Geology Section
1976-1981 Research Associate, Subsurface Geology Section, Kansas Geological Survey, The University of Kansas, Lawrence, Kansas

HONORS:

Phi Kappa Phi Scholastic Honorary (Iowa State University), 1972
Erasmus Haworth Graduate Honors in Geology, (KU), 1985
Honorable Mention for Best Paper -Watney, W.L., French, J., Wong, J.C., and Black, R., 1992, Time-series analysis of natural gamma ray logs from the Midcontinent - tectonic or eustatic signal: SEPM/Society of Sedimentary Geology, Mid-year Meeting
Certificate of Merit Award, AAPG Mid-Continent Section, 1999
Candidate for President, Society of Sedimentary Geology (SEPM), 1999
Distinguished Achievement Citation from Iowa State University, 2001
Jules Braunstein Award, AAPG Annual Meeting, 2001

MEMBERSHIP IN PROFESSIONAL ORGANIZATIONS:

Member, Society for Sedimentary Geology (SEPM), American Association of Petroleum Geologists, Geological Society of America, Society of Petroleum Engineers, Kansas Geological Society
Secretary-Treasurer, Society of Sedimentary Geology (SEPM), 1996-1998
Kansas Geological Society Board of Directors, 1999-2000

PERTINENT PUBLICATIONS:

DANA ADKINS-HELJESON

Present Position:

Program Assistant
Kansas Geological Survey
1930 Constant Ave.
Lawrence, KS 66047-3726

Education:

B.S. New Mexico Institute of Mining and Technology,
Socorro, NM 87801
Basic Sciences, 1983

Pertinent Experience:

1995-Present Kansas Geological Survey, Lawrence, KS 66047
World Wide Web site administrator
Responsible for maintenance of web server, creation of web content.
Largest projects include Digital Petroleum Atlas, Dakota Aquifer Program,
several online versions of educational projects.

1996-Present Kansas Geological Survey, Lawrence, KS 66047
Oracle Database programmer
Created input and output screens and support software for several
databases, including plugged wells, water levels, core library holdings,
and electric log library. Used both PL/SQL and ColdFusion.

Programming
Created small routines using Visual Basic.
Wrote and maintained contour mapping software for Macintosh.

1988-1992 Interactive Concepts Incorporated, Lawrence, KS 66044
Wrote and maintained contour mapping software for UNIX and
Macintosh computers.

Collected, reduced, and interpreted gravity and aeromagnetic data.

Bibliographer
WILLIAM E. HARRISON

Deputy Director & Chief Geologist, Kansas Geological Survey [University of Kansas]

Past-President, Division of Environmental Geosciences [American Association of Petroleum Geologists]

Education

B. S. (Geology) Lamar State College of Technology
M. S. (Geology) University of Oklahoma
Ph. D. (Geochemistry) Louisiana State University

Employment History

U.S. DOE - Idaho National Engineering & Environmental Laboratory
 1994-97 Manager, Geotechnology Department {Lockheed-Martin Idaho}
 1992-94 Manager, Environmental, Earth, & Life Sciences {EG&G Idaho}
 1989-92 Manager, Geoscience {EG&G Idaho}

ARCO Oil and Gas Company [Plano, Texas]
 1984-89 Research Director, Exploration Research

Oklahoma Geological Survey/University of Oklahoma [Norman, Oklahoma]
 1975-84 Faculty/staff geologist-First recipient, Klabzuba Chair of Geology

ARCO Oil and Gas Company [Dallas, Texas]
 1973-75 Sr. Research Geochemist

SHELL Oil Company [Houston, Texas & New Orleans, Louisiana]
 1968-71 Exploration Geologist

Professional Activities

Registered Geologist –WY & PA; Certified Professional Geologist (AIPG); Certified Petroleum Geologist (AAPG); DOE National Peer Review Panel; Idaho Geological Advisory Council; served in appointed and elected local, state, and national positions in various societies and associations; over 65 technical publications on petroleum and organic geochemistry, paleothermometry, heavy oil deposits, reservoir & fluid characteristics of Oklahoma oil fields, geothermal resource assessment, gas hydrates, and undiscovered oil and gas potential of Alaska; Shipboard Organic Geochemist-DSDP Leg 67-first-ever documented recovery of naturally occurring marine gas hydrates; have served as consultant to industry, academia, and state & federal agencies.

Co-Editor, AAPG Book (May 2001), Geological Perspectives of Global Climate Change {also co-author of Chapter 2}, 372 p.
JOHN C. DAVIS

1. Affiliation
President
Davis Consultants Inc.
Box 353, Baldwin City, KS 66006-0353

2. Degrees with fields, institution, and date
M.S., Geology, University of Wyoming 1963
B.S., Geology, The University of Kansas (Lawrence, KS, USA) 1961

3. Professional experience
Junior Geologist, Pan American Petroleum Corp. (summer) 1963
Instructor, Dept. Geology, Idaho State University, Pocatello, ID 1964–66
Research Associate, Kansas Geological Survey, The University of Kansas 1966–77
President, Davis Consultants Inc 1967-2003
Associate Professor, KU Dept. Chemical & Petroleum Engineering 1970–74
Visiting Professor, WSU Dept. Geology, Wichita, KS 1969–70
Chief, Mathematical Geology Section, Kansas Geological Survey, Univ. KS 1970–2003
Visiting Senior Fellow, Dept. Geography, University of Nottingham, UK 1972–73
Courtesy Professor, KU Dept. Geography 1974–95
Visiting Professor, Instituto de Geografia, UNAM, Mexico City, Mexico 1976

4. Consulting since 1995
Alps-Adria Confederation, Leoben, Austria: Umweltgeochemie in Kalkarealen/Mapping 1994-95
Chesapeake Petroleum Co., Dallas, TX: Directional steering in horizontal drilling 1998–99
Heinemann Oil Technology (HOT), Leoben, Austria: Risk assessment in oil exploration 2003

5. Principal publications since 1995

Total Refereed Publications since 1995: 40. A selected list of 12 publications is given below.

9. Harff, J., G.C. Bohling, R. Endler, J.C. Davis, and R. Olea, 1999, Classification and stratigraphic correlation of Holocene sediments from the Baltic Sea according to petrophysical properties (Gliederung
6. Scientific and professional societies membership

American Association of Petroleum Geologists (AAPG), Association of Earth Science Editors, International Association for Mathematical Geology (IAMG; President, 1984-1989), Kansas Geological Society, Kansas Speleological Society (Honorary Member), Phi Beta Delta Honor Society for International Scholars

7. Honors and awards

Distinguished Lecturer, International Association for Mathematical Geology 2003
University of Kansas OIP Faculty Travel Grant 2002
NSF/DAAD German Academic Exchange Grant 2001
Deutsche Forschungsgemeinschaft Travel Grant 1998
German-American Academic Council Grant 1998
AAPG Hedberg Research Conference Invited Participant 1995
Fulbright Senior Research Fellowship, Austria 1993–94
Leder sprung Zeremonie der Montanuniversität-Leoben 1993
Certificate "In appreciation...[for] success of...28th International Geol. Congress“ (IGC) 1989
SPE Forum Invited Participant 1988
Industry Research Grants, Texaco; Unocal; Marathon 1983–85; 1989–92
KU Dept. Chemical & Petroleum Engineering Teaching Award 1982
UNESCO Conference Grant, COGEODATA Conference, Mexico City, Mexico 1978

8. Professional service since 1995

Member, AAPG Committee on Computer Applications to Geology 1969–97
Member, National Geologic Map Database Advisory Committee 1994–97
Member, Subcommittee on Data Quality (Geochemical), IGCP Project 360–World Map 1995–96
Member, AAGS Committee on Digital Geologic Map Standards 1996–2003
Chairman, Krumbein Medal Selection Committee, IAMG 1996
Organizer/Chm., Session 2—Darss Sill Compositional Data, IAMG’97, Barcelona, Spain 1996–97
Member, Editorial Board, IAMG/Plenum Press, Natural Resources Research 1998–2003
Member, IAMG Awards Committee 1998–2002
Chairman, Organizing Committee, IAMG’2001, Cancún, Mexico 2000–2001

Reviewer for Journals/Funding Agencies

Koninklijke Nederlandse Akademie van Wetenschappen 1996
Deutsche Forschungsgemeinschaft 1998

47
RICARDO ANTONIO OLEA

Current Position
Senior Scientist
Mathematical Geology Section
Kansas Geological Survey
1930 Constant Avenue
Lawrence, Kansas 66047
Telephone: (785) 864 2095
FAX: (785) 864 5317
Internet: olea@kgs.ukans.edu

Principal Fields of Professional Experience
Geostatistics, petroleum engineering, well log analysis, geophysics, computer science and mathematics applied to earth sciences, economic evaluation, project management, geohydrology.

Education
1961-1966 Universidad de Chile, Santiago, Chile. Degree: Mining Engineer (6-year program)
1970-1972 University of Kansas, Lawrence, Kansas. Degree: Master of Science in Computer Science
1979-1982 University of Kansas, Lawrence, Kansas. Degree: Doctor of Engineering in Chemical and Petroleum Engineering

Recent Professional Experience
1987-1995 Associate Scientist, Mathematical Geology Section, Kansas Geological Survey, Lawrence, Kansas
1993 Visiting Research Scientist, Institut für Ostseeforschung Warnemünde, Germany (one month)
1995-Present Senior Scientist, Mathematical Geology Section, Kansas Geological Survey, Lawrence, Kansas
1997 Visiting Research Scientist, Institut für Ostseeforschung Warnemünde, Germany (one month)

Professional Affiliations
Member, Society of Petroleum Engineers
Active Member, American Association of Petroleum Geologists
Past President, International Association for Mathematical Geology
Member, Sigma Xi

Honors Received
1966 Juan Brüggen prize to best graduating mining engineer in the country, Instituto de Ingenieros de Minas de Chile
1990 Task Committee Excellence Award, American Society of Civil Engineers
1993 Best Paper Award, Mathematical Geology, the flagship journal of the International Association for Mathematical Geology

Major Developments of Software
1985-2002 CORRELATOR, an interactive computer program for high-resolution, lithostratigraphic, well-log correlation: Kansas Geological Survey, Lawrence, Kansas

Books

Special Publications
Recent Peer-Reviewed Papers and Book Chapters

SUSAN E. NISSEN

PRESENT POSITION:
Assistant Scientist
Petroleum Research Section
Kansas Geological Survey
1930 Constant Avenue
Lawrence, Kansas 66047

EDUCATION:
B.S. Geophysics, summa cum laude, University of Delaware, Newark, Delaware, 1983

PROFESSIONAL EXPERIENCE:
2000-present Assistant Scientist, Petroleum Research Section, Kansas Geological Survey, Lawrence, Kansas
1997-1999 Team Leader, Seismic Coherence/Spectral Decomposition Team, Amoco Exploration & Production Technology Group, Tulsa, Oklahoma
1994-1999 Research Scientist/Senior Research Scientist, Seismic Coherence/Spectral Decomposition Team, Amoco Exploration & Production Technology Group, Tulsa, Oklahoma

HONORS:
Amoco Recognition and Reward Program awards, 1996, 1998
Heezen Prize for academic and research excellence, Columbia University Department of Geological Sciences, 1986

MEMBERSHIP IN PROFESSIONAL ORGANIZATIONS:
American Association of Petroleum Geologists
American Geophysical Union
Geological Society of America
Society of Exploration Geophysicists
Kansas Geological Society
Tulsa Geological Society
Geophysical Society of Tulsa (Treasurer, 1996-1997)

SELECTED PUBLICATIONS:

