KGS

Geology

  Douglas County Geohydrolgy

Prev Page--Ground-water Resources || Next Page--Aquifer Properties


Start

Table of Contents

Abstract

Introduction

Geography

Subsurface Stratigraphy

Outcropping Rocks

Structural Geology

Ground Water
  Intro
  Recharge and Discharge
  Chemistry
  Aquifer Properties
  Availability
  Utilization

Wells and Springs

Logs

References

Plates

 

Ground-water Resources

Chemical Character of Ground Water

Water is often referred to as the universal solvent. Various gases and minerals are taken into solution by water as it is precipitated and as it percolates through the earth materials. The kind and amount of impurities in ground water may be determined by chemical analysis. The corrosiveness, encrusting tendency, palatability, and other objectionable or desirable properties can be predicted from the results of a quantitative analysis.

The analyses of 112 samples of water from wells, test holes, and springs in Douglas County are given in Table 4 in parts per million (ppm). Factors for converting parts per million of mineral constituents to equivalents per million are given in Table 5.

Table 5.--Factors for converting parts per million of mineral constituents to equivalents per million.

Cation Conversion
factor
Anion Conversion
factor
Ca++ 0.0499 HCO3- 0.0164
Mg++ 0.0822 SO4-- 0.0208
Na+ 0.0435 Cl- 0.0282
    NO3- 0.0161
    F- 0.0526

Quality in relation to use--Ground water from properly constructed wells characteristically has good bacterial and sanitary quality, but the chemical character of the water is of importance also. Water to be used for drinking should not contain excessive amounts of iron, magnesium, chloride, sulfate, nitrate, and certain other constituents. Water used for cooking and washing has these and other limitations, chiefly of hardness and bicarbonate. Water used for irrigation should not contain excessive mineral matter nor excessive amounts of chloride or of sodium in relation to other cations.

Ground water used in industrial processes generally must meet certain standards. These standards for some processes may be much more critical than standards for drinking water. The total dissolved solids, hardness, hydrogen-ion concentration (pH), alkalinity, and iron are some of the more important factors. Temperature also is an important factor in many industrial uses of ground water.

Dissolved solids--When water is evaporated the residue consists mainly of the mineral constituents listed in Table 4 and may include a small quantity of organic material and water of crystallization. Water containing less than 500 ppm of dissolved solids generally is satisfactory for domestic use, except for difficulties resulting from its hardness, or an excessive content of iron. Water containing more than 1,000 ppm of dissolved solids may include enough of certain constituents to produce a noticeable taste or to make it unsuitable in some other respect.

The amount of dissolved solids in 66 samples of ground water collected in Douglas County from wells, test holes, and springs is indicated in Table 4. The dissolved solids content ranged from 135 to 21,400 ppm. Twenty-two samples, all from Pennsylvanian sandstone and limestone aquifers, contained more than 1,000 ppm.

Hardness--Hardness of water is commonly recognized by its effect when soap is used with the water. Calcium and magnesium cause nearly all the hardness of water and are the active agents in the formation of the greater part of scale in steam boilers and other vessels in which water is heated or evaporated.

In addition to the total hardness, the table of analyses gives the carbonate and noncarbonate hardness of water in Douglas County. Carbonate, or temporary, hardness can be removed almost entirely by boiling. The noncarbonate hardness is due to the presence of sulfates or chlorides of calcium and magnesium; it cannot be removed by boiling and, therefore, is sometimes called permanent hardness. The two types of hardness have the same reaction when the water is used with soap.

Water having a hardness of less than 60 ppm is rated as soft and is seldom treated to remove hardness. Hardness of 60 to 120 ppm increases the consumption of soap but does not seriously interfere with the use of the water for most purposes. Hardness of more than 120 ppm can be noticed by anyone; if the amount is about 200 ppm or more the water is sometimes softened for household use, or cisterns may be installed to collect soft rainwater. Where municipal supplies are softened, the hardness is generally reduced to between 80 and 100 ppm.

The hardness of 97 samples of ground water collected in Douglas County ranged from 19 to 2,590 ppm (Table 4). The hardest and softest waters were from Pennsylvanian sandstones, but more than half of the samples collected from Pennsylvanian rocks had a hardness of less than 200 ppm. Almost all the water samples collected from Quaternary deposits have a hardness range from 200 to 800 ppm, and in general they are appreciably harder than water from the Pennsylvanian sandstones.

Iron--Iron (Fe) generally is present in small quantities in most natural ground water. If water contains much more than 0.1 ppm, some of the iron may precipitate as a reddish sediment. Iron in excess of 0.3 ppm is undesirable, as it may stain cooking utensils, plumbing fixtures, and clothing being laundered, or give a disagreeable taste to the water.

The iron content of 96 samples of ground water collected in Douglas County ranged from 0.03 to 49 ppm (Table 4). Of the 96 samples, 69 contained 0.3 ppm or more of iron.

Fluoride--Fluoride (F) in concentrations of about 1 ppm in drinking water used by children during the period of calcification of the teeth prevents or lessens the incidence of tooth decay; concentrations greater than 1.5 ppm may cause mottling of the enamel (Dean, 1936, 1938; U. S. Public Health Service, 1946).

The fluoride content of 97 samples of ground water collected in Douglas County ranged from 0.0 to 12 ppm. Fifteen samples, all from Pennsylvanian sandstone aquifers, contained fluoride in amounts greater than 1.5 ppm.

Nitrate--A concentration of 90 ppm of nitrate (NO3) in drinking water may cause cyanosis and hence is judged by the Kansas State Board of Health to be dangerous to infants (Metzler and Stoltenberg, 1950), and some authorities (Comly, 1945) recommend that water containing more than 45 ppm should not be used for preparation of infants' formulas. Concentrations of nitrate found in ground water generally do not cause cyanosis in older children or adults but may have other adverse effects.

Of the 64 samples analyzed for nitrate (NO3), only 4 contained more than 90 ppm. Of these, 3 samples were from shallow dug wells, which as a rule are more susceptible to contamination from the surface than are deeper, drilled wells. The nitrate content of the 64 samples ranged from 0.0 to 257 ppm.

Sulfate--Sulfate (SO4) in ground water is derived chiefly from solution of gypsum and the oxidization of iron sulfides, Sulfate occurring in ground water as magnesium sulfate (Epsom salt) and sodium sulfate (Glauber's salt) in excess of about 500 ppm may have a laxative effect on persons not accustomed to drinking such water.

Chloride--Chloride (CI) in ground water may be derived from connate marine water in the sediments, from sewage, or, in small quantities, from solution of minerals containing chloride. Chloride has little effect on the suitability of water for ordinary use unless the quantity is enough to give the taste of salt. A chloride content of about 250 or 300 ppm can be detected by persons having a sensitive taste. Water strong in chloride is corrosive to many metal surfaces.

Sodium chloride is the chief dissolved constituent of the ground water in some of the deeper Pennsylvanian sandstone aquifers, which prevents use of otherwise adequate supplies of ground water in some parts of the county.

The chloride content of 112 samples analyzed ranged from 1.5 to 12,800 ppm.

Sanitary considerations--The analyses of water (Table 4) show only the amount of dissolved minerals and do not indicate the sanitary quality of the water. Well water may contain mineral matter that gives the water an objectionable taste, but may be free from harmful bacteria and consequently may be safe for drinking. Other well water, good tasting and seemingly pure, may contain harmful bacteria. Excessive amounts of certain dissolved minerals, such as chloride or nitrate, may indicate pollution.

Recommended sanitary types of construction and suggestions for locations and pump installations for different types of wells can be obtained from the Kansas State Board of Health.

Changes in temperature and quality of water--The temperature of ground water tapped by wells is uniformly about 57°F to 59°F in this area but may be a few degrees colder or warmer in very shallow or very deep aquifers. In most aquifers, except very shallow ones, the annual temperature fluctuation is small. The pumping of wells located near a stream may induce recharge from the stream, and thus cause an increase or decrease in the temperature of ground water being pumped. The temperature of Kansas River ranges from about 32°F to 80°F, and if a significant proportion of ground water being pumped from a well is indirect recharge of appreciably colder or warmer river water, the well-water temperature may be noticeably affected. According to temperature records kept by Westvaco Mineral Products Division of Food Machinery & Chemical Corp. at its Lawrence plant, ground water pumped from its well field, 0.6 to 0.7 mile from Kansas River, has a nearly constant temperature of 58°F throughout the year, the maximum variation reportedly being about half a degree. Wells therefore must be much closer to the river to be noticeably affected by fluctuations in the temperature of the river water.

The chemical quality of water in an aquifer may be modified by ground-water development and use. Return flow from irrigation, waste water from industry, or waste water from municipalities generally contains a greater proportion of dissolved matter than it had prior to use. If all or a part of this water is returned to the aquifer it may result in a ground-water supply of lower quality. If development of ground-water supplies results in additional recharge of ,letter or poorer water to the aquifer, it may produce ground water of respectively better or poorer quality.

Prev Page--Ground-water Resources || Next Page--Aquifer Properties

 
Kansas Geological Survey, Geohydrology of Douglas County
Comments to webadmin@kgs.ku.edu
Web version Aug. 1999. Original publication date Dec. 1960.
URL=http://www.kgs.ku.edu/General/Geology/Douglas/gw02.html